File size: 5,764 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import numpy as np  # noqa: E402

from ....configuration_utils import ConfigMixin, register_to_config
from ....schedulers.scheduling_utils import SchedulerMixin


try:
    import librosa  # noqa: E402

    _librosa_can_be_imported = True
    _import_error = ""
except Exception as e:
    _librosa_can_be_imported = False
    _import_error = (
        f"Cannot import librosa because {e}. Make sure to correctly install librosa to be able to install it."
    )


from PIL import Image  # noqa: E402


class Mel(ConfigMixin, SchedulerMixin):
    """
    Parameters:
        x_res (`int`):
            x resolution of spectrogram (time).
        y_res (`int`):
            y resolution of spectrogram (frequency bins).
        sample_rate (`int`):
            Sample rate of audio.
        n_fft (`int`):
            Number of Fast Fourier Transforms.
        hop_length (`int`):
            Hop length (a higher number is recommended if `y_res` < 256).
        top_db (`int`):
            Loudest decibel value.
        n_iter (`int`):
            Number of iterations for Griffin-Lim Mel inversion.
    """

    config_name = "mel_config.json"

    @register_to_config
    def __init__(
        self,
        x_res: int = 256,
        y_res: int = 256,
        sample_rate: int = 22050,
        n_fft: int = 2048,
        hop_length: int = 512,
        top_db: int = 80,
        n_iter: int = 32,
    ):
        self.hop_length = hop_length
        self.sr = sample_rate
        self.n_fft = n_fft
        self.top_db = top_db
        self.n_iter = n_iter
        self.set_resolution(x_res, y_res)
        self.audio = None

        if not _librosa_can_be_imported:
            raise ValueError(_import_error)

    def set_resolution(self, x_res: int, y_res: int):
        """Set resolution.

        Args:
            x_res (`int`):
                x resolution of spectrogram (time).
            y_res (`int`):
                y resolution of spectrogram (frequency bins).
        """
        self.x_res = x_res
        self.y_res = y_res
        self.n_mels = self.y_res
        self.slice_size = self.x_res * self.hop_length - 1

    def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None):
        """Load audio.

        Args:
            audio_file (`str`):
                An audio file that must be on disk due to [Librosa](https://librosa.org/) limitation.
            raw_audio (`np.ndarray`):
                The raw audio file as a NumPy array.
        """
        if audio_file is not None:
            self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr)
        else:
            self.audio = raw_audio

        # Pad with silence if necessary.
        if len(self.audio) < self.x_res * self.hop_length:
            self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))])

    def get_number_of_slices(self) -> int:
        """Get number of slices in audio.

        Returns:
            `int`:
                Number of spectograms audio can be sliced into.
        """
        return len(self.audio) // self.slice_size

    def get_audio_slice(self, slice: int = 0) -> np.ndarray:
        """Get slice of audio.

        Args:
            slice (`int`):
                Slice number of audio (out of `get_number_of_slices()`).

        Returns:
            `np.ndarray`:
                The audio slice as a NumPy array.
        """
        return self.audio[self.slice_size * slice : self.slice_size * (slice + 1)]

    def get_sample_rate(self) -> int:
        """Get sample rate.

        Returns:
            `int`:
                Sample rate of audio.
        """
        return self.sr

    def audio_slice_to_image(self, slice: int) -> Image.Image:
        """Convert slice of audio to spectrogram.

        Args:
            slice (`int`):
                Slice number of audio to convert (out of `get_number_of_slices()`).

        Returns:
            `PIL Image`:
                A grayscale image of `x_res x y_res`.
        """
        S = librosa.feature.melspectrogram(
            y=self.get_audio_slice(slice), sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels
        )
        log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db)
        bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8)
        image = Image.fromarray(bytedata)
        return image

    def image_to_audio(self, image: Image.Image) -> np.ndarray:
        """Converts spectrogram to audio.

        Args:
            image (`PIL Image`):
                An grayscale image of `x_res x y_res`.

        Returns:
            audio (`np.ndarray`):
                The audio as a NumPy array.
        """
        bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape((image.height, image.width))
        log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db
        S = librosa.db_to_power(log_S)
        audio = librosa.feature.inverse.mel_to_audio(
            S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter
        )
        return audio