File size: 6,322 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import List, Optional, Tuple, Union

import torch

from ...utils import logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class DanceDiffusionPipeline(DiffusionPipeline):
    r"""
    Pipeline for audio generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Parameters:
        unet ([`UNet1DModel`]):
            A `UNet1DModel` to denoise the encoded audio.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
            [`IPNDMScheduler`].
    """

    model_cpu_offload_seq = "unet"

    def __init__(self, unet, scheduler):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
        batch_size: int = 1,
        num_inference_steps: int = 100,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        audio_length_in_s: Optional[float] = None,
        return_dict: bool = True,
    ) -> Union[AudioPipelineOutput, Tuple]:
        r"""
        The call function to the pipeline for generation.

        Args:
            batch_size (`int`, *optional*, defaults to 1):
                The number of audio samples to generate.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher-quality audio sample at
                the expense of slower inference.
            generator (`torch.Generator`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            audio_length_in_s (`float`, *optional*, defaults to `self.unet.config.sample_size/self.unet.config.sample_rate`):
                The length of the generated audio sample in seconds.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple.

        Example:

        ```py
        from diffusers import DiffusionPipeline
        from scipy.io.wavfile import write

        model_id = "harmonai/maestro-150k"
        pipe = DiffusionPipeline.from_pretrained(model_id)
        pipe = pipe.to("cuda")

        audios = pipe(audio_length_in_s=4.0).audios

        # To save locally
        for i, audio in enumerate(audios):
            write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose())

        # To dislay in google colab
        import IPython.display as ipd

        for audio in audios:
            display(ipd.Audio(audio, rate=pipe.unet.sample_rate))
        ```

        Returns:
            [`~pipelines.AudioPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated audio.
        """

        if audio_length_in_s is None:
            audio_length_in_s = self.unet.config.sample_size / self.unet.config.sample_rate

        sample_size = audio_length_in_s * self.unet.config.sample_rate

        down_scale_factor = 2 ** len(self.unet.up_blocks)
        if sample_size < 3 * down_scale_factor:
            raise ValueError(
                f"{audio_length_in_s} is too small. Make sure it's bigger or equal to"
                f" {3 * down_scale_factor / self.unet.config.sample_rate}."
            )

        original_sample_size = int(sample_size)
        if sample_size % down_scale_factor != 0:
            sample_size = (
                (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
            ) * down_scale_factor
            logger.info(
                f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled"
                f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising"
                " process."
            )
        sample_size = int(sample_size)

        dtype = next(self.unet.parameters()).dtype
        shape = (batch_size, self.unet.config.in_channels, sample_size)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        audio = randn_tensor(shape, generator=generator, device=self._execution_device, dtype=dtype)

        # set step values
        self.scheduler.set_timesteps(num_inference_steps, device=audio.device)
        self.scheduler.timesteps = self.scheduler.timesteps.to(dtype)

        for t in self.progress_bar(self.scheduler.timesteps):
            # 1. predict noise model_output
            model_output = self.unet(audio, t).sample

            # 2. compute previous audio sample: x_t -> t_t-1
            audio = self.scheduler.step(model_output, t, audio).prev_sample

        audio = audio.clamp(-1, 1).float().cpu().numpy()

        audio = audio[:, :, :original_sample_size]

        if not return_dict:
            return (audio,)

        return AudioPipelineOutput(audios=audio)