Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,322 Bytes
62c110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class DanceDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for audio generation.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Parameters:
unet ([`UNet1DModel`]):
A `UNet1DModel` to denoise the encoded audio.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
[`IPNDMScheduler`].
"""
model_cpu_offload_seq = "unet"
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
num_inference_steps: int = 100,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
audio_length_in_s: Optional[float] = None,
return_dict: bool = True,
) -> Union[AudioPipelineOutput, Tuple]:
r"""
The call function to the pipeline for generation.
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of audio samples to generate.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher-quality audio sample at
the expense of slower inference.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
audio_length_in_s (`float`, *optional*, defaults to `self.unet.config.sample_size/self.unet.config.sample_rate`):
The length of the generated audio sample in seconds.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple.
Example:
```py
from diffusers import DiffusionPipeline
from scipy.io.wavfile import write
model_id = "harmonai/maestro-150k"
pipe = DiffusionPipeline.from_pretrained(model_id)
pipe = pipe.to("cuda")
audios = pipe(audio_length_in_s=4.0).audios
# To save locally
for i, audio in enumerate(audios):
write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose())
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
display(ipd.Audio(audio, rate=pipe.unet.sample_rate))
```
Returns:
[`~pipelines.AudioPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated audio.
"""
if audio_length_in_s is None:
audio_length_in_s = self.unet.config.sample_size / self.unet.config.sample_rate
sample_size = audio_length_in_s * self.unet.config.sample_rate
down_scale_factor = 2 ** len(self.unet.up_blocks)
if sample_size < 3 * down_scale_factor:
raise ValueError(
f"{audio_length_in_s} is too small. Make sure it's bigger or equal to"
f" {3 * down_scale_factor / self.unet.config.sample_rate}."
)
original_sample_size = int(sample_size)
if sample_size % down_scale_factor != 0:
sample_size = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled"
f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising"
" process."
)
sample_size = int(sample_size)
dtype = next(self.unet.parameters()).dtype
shape = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
audio = randn_tensor(shape, generator=generator, device=self._execution_device, dtype=dtype)
# set step values
self.scheduler.set_timesteps(num_inference_steps, device=audio.device)
self.scheduler.timesteps = self.scheduler.timesteps.to(dtype)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
model_output = self.unet(audio, t).sample
# 2. compute previous audio sample: x_t -> t_t-1
audio = self.scheduler.step(model_output, t, audio).prev_sample
audio = audio.clamp(-1, 1).float().cpu().numpy()
audio = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=audio)
|