Spaces:
Running
on
Zero
Running
on
Zero
File size: 50,299 Bytes
62c110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from huggingface_hub.utils import validate_hf_hub_args
from ..configuration_utils import ConfigMixin
from .controlnet import (
StableDiffusionControlNetImg2ImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionXLControlNetInpaintPipeline,
StableDiffusionXLControlNetPipeline,
)
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
from .kandinsky import (
KandinskyCombinedPipeline,
KandinskyImg2ImgCombinedPipeline,
KandinskyImg2ImgPipeline,
KandinskyInpaintCombinedPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
)
from .kandinsky2_2 import (
KandinskyV22CombinedPipeline,
KandinskyV22Img2ImgCombinedPipeline,
KandinskyV22Img2ImgPipeline,
KandinskyV22InpaintCombinedPipeline,
KandinskyV22InpaintPipeline,
KandinskyV22Pipeline,
)
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
from .pixart_alpha import PixArtAlphaPipeline, PixArtSigmaPipeline
from .stable_cascade import StableCascadeCombinedPipeline, StableCascadeDecoderPipeline
from .stable_diffusion import (
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
)
from .stable_diffusion_xl import (
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLPipeline,
)
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionPipeline),
("stable-diffusion-xl", StableDiffusionXLPipeline),
("if", IFPipeline),
("kandinsky", KandinskyCombinedPipeline),
("kandinsky22", KandinskyV22CombinedPipeline),
("kandinsky3", Kandinsky3Pipeline),
("stable-diffusion-controlnet", StableDiffusionControlNetPipeline),
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline),
("wuerstchen", WuerstchenCombinedPipeline),
("cascade", StableCascadeCombinedPipeline),
("lcm", LatentConsistencyModelPipeline),
("pixart-alpha", PixArtAlphaPipeline),
("pixart-sigma", PixArtSigmaPipeline),
]
)
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionImg2ImgPipeline),
("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline),
("if", IFImg2ImgPipeline),
("kandinsky", KandinskyImg2ImgCombinedPipeline),
("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),
("kandinsky3", Kandinsky3Img2ImgPipeline),
("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline),
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline),
("lcm", LatentConsistencyModelImg2ImgPipeline),
]
)
AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionInpaintPipeline),
("stable-diffusion-xl", StableDiffusionXLInpaintPipeline),
("if", IFInpaintingPipeline),
("kandinsky", KandinskyInpaintCombinedPipeline),
("kandinsky22", KandinskyV22InpaintCombinedPipeline),
("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline),
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetInpaintPipeline),
]
)
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
[
("kandinsky", KandinskyPipeline),
("kandinsky22", KandinskyV22Pipeline),
("wuerstchen", WuerstchenDecoderPipeline),
("cascade", StableCascadeDecoderPipeline),
]
)
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict(
[
("kandinsky", KandinskyImg2ImgPipeline),
("kandinsky22", KandinskyV22Img2ImgPipeline),
]
)
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict(
[
("kandinsky", KandinskyInpaintPipeline),
("kandinsky22", KandinskyV22InpaintPipeline),
]
)
SUPPORTED_TASKS_MAPPINGS = [
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
AUTO_INPAINT_PIPELINES_MAPPING,
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING,
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING,
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING,
]
def _get_connected_pipeline(pipeline_cls):
# for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder
if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values():
return _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
)
if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values():
return _get_task_class(
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False
)
if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values():
return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False)
def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True):
def get_model(pipeline_class_name):
for task_mapping in SUPPORTED_TASKS_MAPPINGS:
for model_name, pipeline in task_mapping.items():
if pipeline.__name__ == pipeline_class_name:
return model_name
model_name = get_model(pipeline_class_name)
if model_name is not None:
task_class = mapping.get(model_name, None)
if task_class is not None:
return task_class
if throw_error_if_not_exist:
raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}")
class AutoPipelineForText2Image(ConfigMixin):
r"""
[`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
of Diffusers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co./docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image
>>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> image = pipeline(prompt).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", None)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"proxies": proxies,
"token": token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "controlnet" in kwargs:
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.
The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image
pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
additional memory.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
>>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
... )
>>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
>>> image = pipe_t2i(prompt).images[0]
```
"""
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
text_2_image_cls = _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
text_2_image_cls.__name__.replace("ControlNet", "").replace("Pipeline", "ControlNetPipeline"),
)
else:
text_2_image_cls = _get_task_class(
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
text_2_image_cls.__name__.replace("ControlNetPipeline", "Pipeline"),
)
# define expected module and optional kwargs given the pipeline signature
expected_modules, optional_kwargs = text_2_image_cls._get_signature_keys(text_2_image_cls)
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
# allow users pass modules in `kwargs` to override the original pipeline's components
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
original_class_obj = {
k: pipeline.components[k]
for k, v in pipeline.components.items()
if k in expected_modules and k not in passed_class_obj
}
# allow users pass optional kwargs to override the original pipelines config attribute
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
original_pipe_kwargs = {
k: original_config[k]
for k, v in original_config.items()
if k in optional_kwargs and k not in passed_pipe_kwargs
}
# config that were not expected by original pipeline is stored as private attribute
# we will pass them as optional arguments if they can be accepted by the pipeline
additional_pipe_kwargs = [
k[1:]
for k in original_config.keys()
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
]
for k in additional_pipe_kwargs:
original_pipe_kwargs[k] = original_config.pop(f"_{k}")
text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}
# store unused config as private attribute
unused_original_config = {
f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
for k, v in original_config.items()
if k not in text_2_image_kwargs
}
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(text_2_image_kwargs.keys())
if len(missing_modules) > 0:
raise ValueError(
f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
)
model = text_2_image_cls(**text_2_image_kwargs)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
model.register_to_config(**unused_original_config)
return model
class AutoPipelineForImage2Image(ConfigMixin):
r"""
[`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class
name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`]
object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
of Diffusers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co./docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForImage2Image
>>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> image = pipeline(prompt, image).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", None)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"proxies": proxies,
"token": token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "controlnet" in kwargs:
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class.
The from_pipe() method takes care of returning the correct pipeline class instance by finding the
image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
additional memory.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
... )
>>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
>>> image = pipe_i2i(prompt, image).images[0]
```
"""
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
image_2_image_cls = _get_task_class(
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
image_2_image_cls.__name__.replace("ControlNet", "").replace(
"Img2ImgPipeline", "ControlNetImg2ImgPipeline"
),
)
else:
image_2_image_cls = _get_task_class(
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
image_2_image_cls.__name__.replace("ControlNetImg2ImgPipeline", "Img2ImgPipeline"),
)
# define expected module and optional kwargs given the pipeline signature
expected_modules, optional_kwargs = image_2_image_cls._get_signature_keys(image_2_image_cls)
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
# allow users pass modules in `kwargs` to override the original pipeline's components
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
original_class_obj = {
k: pipeline.components[k]
for k, v in pipeline.components.items()
if k in expected_modules and k not in passed_class_obj
}
# allow users pass optional kwargs to override the original pipelines config attribute
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
original_pipe_kwargs = {
k: original_config[k]
for k, v in original_config.items()
if k in optional_kwargs and k not in passed_pipe_kwargs
}
# config attribute that were not expected by original pipeline is stored as its private attribute
# we will pass them as optional arguments if they can be accepted by the pipeline
additional_pipe_kwargs = [
k[1:]
for k in original_config.keys()
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
]
for k in additional_pipe_kwargs:
original_pipe_kwargs[k] = original_config.pop(f"_{k}")
image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}
# store unused config as private attribute
unused_original_config = {
f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
for k, v in original_config.items()
if k not in image_2_image_kwargs
}
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(image_2_image_kwargs.keys())
if len(missing_modules) > 0:
raise ValueError(
f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
)
model = image_2_image_cls(**image_2_image_kwargs)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
model.register_to_config(**unused_original_config)
return model
class AutoPipelineForInpainting(ConfigMixin):
r"""
[`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The
specific underlying pipeline class is automatically selected from either the
[`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods.
This class cannot be instantiated using `__init__()` (throws an error).
Class attributes:
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
diffusion pipeline's components.
"""
config_name = "model_index.json"
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods."
)
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_or_path, **kwargs):
r"""
Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight.
The from_pretrained() method takes care of returning the correct pipeline class instance by:
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its
config object
2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name.
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`]
object.
The pipeline is set in evaluation mode (`model.eval()`) by default.
If you get the error message below, you need to finetune the weights for your downstream task:
```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Parameters:
pretrained_model_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
saved using
[`~DiffusionPipeline.save_pretrained`].
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
of Diffusers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
custom_revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn’t need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
each GPU and the available CPU RAM if unset.
offload_folder (`str` or `os.PathLike`, *optional*):
The path to offload weights if device_map contains the value `"disk"`.
offload_state_dict (`bool`, *optional*):
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
when there is some disk offload.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
use_safetensors (`bool`, *optional*, defaults to `None`):
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
weights. If set to `False`, safetensors weights are not loaded.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
variant (`str`, *optional*):
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
loading `from_flax`.
<Tip>
To use private or [gated](https://huggingface.co./docs/hub/models-gated#gated-models) models, log-in with
`huggingface-cli login`.
</Tip>
Examples:
```py
>>> from diffusers import AutoPipelineForInpainting
>>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
```
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", None)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
load_config_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"resume_download": resume_download,
"proxies": proxies,
"token": token,
"local_files_only": local_files_only,
"revision": revision,
}
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs)
orig_class_name = config["_class_name"]
if "controlnet" in kwargs:
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline")
inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name)
kwargs = {**load_config_kwargs, **kwargs}
return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs)
@classmethod
def from_pipe(cls, pipeline, **kwargs):
r"""
Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class.
The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting
pipeline linked to the pipeline class using pattern matching on pipeline class name.
All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating
additional memory.
The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pipeline (`DiffusionPipeline`):
an instantiated `DiffusionPipeline` object
Examples:
```py
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
... "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False
... )
>>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i)
>>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0]
```
"""
original_config = dict(pipeline.config)
original_cls_name = pipeline.__class__.__name__
# derive the pipeline class to instantiate
inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name)
if "controlnet" in kwargs:
if kwargs["controlnet"] is not None:
inpainting_cls = _get_task_class(
AUTO_INPAINT_PIPELINES_MAPPING,
inpainting_cls.__name__.replace("ControlNet", "").replace(
"InpaintPipeline", "ControlNetInpaintPipeline"
),
)
else:
inpainting_cls = _get_task_class(
AUTO_INPAINT_PIPELINES_MAPPING,
inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"),
)
# define expected module and optional kwargs given the pipeline signature
expected_modules, optional_kwargs = inpainting_cls._get_signature_keys(inpainting_cls)
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
# allow users pass modules in `kwargs` to override the original pipeline's components
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
original_class_obj = {
k: pipeline.components[k]
for k, v in pipeline.components.items()
if k in expected_modules and k not in passed_class_obj
}
# allow users pass optional kwargs to override the original pipelines config attribute
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
original_pipe_kwargs = {
k: original_config[k]
for k, v in original_config.items()
if k in optional_kwargs and k not in passed_pipe_kwargs
}
# config that were not expected by original pipeline is stored as private attribute
# we will pass them as optional arguments if they can be accepted by the pipeline
additional_pipe_kwargs = [
k[1:]
for k in original_config.keys()
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
]
for k in additional_pipe_kwargs:
original_pipe_kwargs[k] = original_config.pop(f"_{k}")
inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs}
# store unused config as private attribute
unused_original_config = {
f"{'' if k.startswith('_') else '_'}{k}": original_config[k]
for k, v in original_config.items()
if k not in inpainting_kwargs
}
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(inpainting_kwargs.keys())
if len(missing_modules) > 0:
raise ValueError(
f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
)
model = inpainting_cls(**inpainting_kwargs)
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
model.register_to_config(**unused_original_config)
return model
|