File size: 34,694 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
# Modified from minSDXL by Simo Ryu: 
# https://github.com/cloneofsimo/minSDXL ,
# which is in turn modified from the original code of:
# https://github.com/huggingface/diffusers
# So has APACHE 2.0 license

from typing import Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import inspect

from collections import namedtuple

from torch.fft import fftn, fftshift, ifftn, ifftshift

from diffusers.models.attention_processor import AttnProcessor, AttnProcessor2_0

# Implementation of FreeU for minsdxl

def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor":
    """Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497).

    This version of the method comes from here:
    https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706
    """
    x = x_in
    B, C, H, W = x.shape

    # Non-power of 2 images must be float32
    if (W & (W - 1)) != 0 or (H & (H - 1)) != 0:
        x = x.to(dtype=torch.float32)

    # FFT
    x_freq = fftn(x, dim=(-2, -1))
    x_freq = fftshift(x_freq, dim=(-2, -1))

    B, C, H, W = x_freq.shape
    mask = torch.ones((B, C, H, W), device=x.device)

    crow, ccol = H // 2, W // 2
    mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale
    x_freq = x_freq * mask

    # IFFT
    x_freq = ifftshift(x_freq, dim=(-2, -1))
    x_filtered = ifftn(x_freq, dim=(-2, -1)).real

    return x_filtered.to(dtype=x_in.dtype)


def apply_freeu(
    resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs):
    """Applies the FreeU mechanism as introduced in https:
    //arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU.

    Args:
        resolution_idx (`int`): Integer denoting the UNet block where FreeU is being applied.
        hidden_states (`torch.Tensor`): Inputs to the underlying block.
        res_hidden_states (`torch.Tensor`): Features from the skip block corresponding to the underlying block.
        s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features.
        s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features.
        b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
        b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
    """
    if resolution_idx == 0:
        num_half_channels = hidden_states.shape[1] // 2
        hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b1"]
        res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s1"])
    if resolution_idx == 1:
        num_half_channels = hidden_states.shape[1] // 2
        hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b2"]
        res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s2"])

    return hidden_states, res_hidden_states

# Diffusers-style LoRA to keep everything in the min_sdxl.py file

class LoRALinearLayer(nn.Module):
    r"""
    A linear layer that is used with LoRA.

    Parameters:
        in_features (`int`):
            Number of input features.
        out_features (`int`):
            Number of output features.
        rank (`int`, `optional`, defaults to 4):
            The rank of the LoRA layer.
        network_alpha (`float`, `optional`, defaults to `None`):
            The value of the network alpha used for stable learning and preventing underflow. This value has the same
            meaning as the `--network_alpha` option in the kohya-ss trainer script. See
            https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        device (`torch.device`, `optional`, defaults to `None`):
            The device to use for the layer's weights.
        dtype (`torch.dtype`, `optional`, defaults to `None`):
            The dtype to use for the layer's weights.
    """

    def __init__(
        self,
        in_features: int,
        out_features: int,
        rank: int = 4,
        network_alpha: Optional[float] = None,
        device: Optional[Union[torch.device, str]] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        super().__init__()

        self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
        self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank
        self.out_features = out_features
        self.in_features = in_features

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)

class LoRACompatibleLinear(nn.Linear):
    """
    A Linear layer that can be used with LoRA.
    """

    def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
        super().__init__(*args, **kwargs)
        self.lora_layer = lora_layer

    def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
        self.lora_layer = lora_layer

    def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
        if self.lora_layer is None:
            return

        dtype, device = self.weight.data.dtype, self.weight.data.device

        w_orig = self.weight.data.float()
        w_up = self.lora_layer.up.weight.data.float()
        w_down = self.lora_layer.down.weight.data.float()

        if self.lora_layer.network_alpha is not None:
            w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank

        fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])

        if safe_fusing and torch.isnan(fused_weight).any().item():
            raise ValueError(
                "This LoRA weight seems to be broken. "
                f"Encountered NaN values when trying to fuse LoRA weights for {self}."
                "LoRA weights will not be fused."
            )

        self.weight.data = fused_weight.to(device=device, dtype=dtype)

        # we can drop the lora layer now
        self.lora_layer = None

        # offload the up and down matrices to CPU to not blow the memory
        self.w_up = w_up.cpu()
        self.w_down = w_down.cpu()
        self._lora_scale = lora_scale

    def _unfuse_lora(self):
        if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
            return

        fused_weight = self.weight.data
        dtype, device = fused_weight.dtype, fused_weight.device

        w_up = self.w_up.to(device=device).float()
        w_down = self.w_down.to(device).float()

        unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
        self.weight.data = unfused_weight.to(device=device, dtype=dtype)

        self.w_up = None
        self.w_down = None

    def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
        if self.lora_layer is None:
            out = super().forward(hidden_states)
            return out
        else:
            out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
            return out

class Timesteps(nn.Module):
    def __init__(self, num_channels: int = 320):
        super().__init__()
        self.num_channels = num_channels

    def forward(self, timesteps):
        half_dim = self.num_channels // 2
        exponent = -math.log(10000) * torch.arange(
            half_dim, dtype=torch.float32, device=timesteps.device
        )
        exponent = exponent / (half_dim - 0.0)

        emb = torch.exp(exponent)
        emb = timesteps[:, None].float() * emb[None, :]

        sin_emb = torch.sin(emb)
        cos_emb = torch.cos(emb)
        emb = torch.cat([cos_emb, sin_emb], dim=-1)

        return emb


class TimestepEmbedding(nn.Module):
    def __init__(self, in_features, out_features):
        super(TimestepEmbedding, self).__init__()
        self.linear_1 = nn.Linear(in_features, out_features, bias=True)
        self.act = nn.SiLU()
        self.linear_2 = nn.Linear(out_features, out_features, bias=True)

    def forward(self, sample):
        sample = self.linear_1(sample)
        sample = self.act(sample)
        sample = self.linear_2(sample)

        return sample


class ResnetBlock2D(nn.Module):
    def __init__(self, in_channels, out_channels, conv_shortcut=True):
        super(ResnetBlock2D, self).__init__()
        self.norm1 = nn.GroupNorm(32, in_channels, eps=1e-05, affine=True)
        self.conv1 = nn.Conv2d(
            in_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        self.time_emb_proj = nn.Linear(1280, out_channels, bias=True)
        self.norm2 = nn.GroupNorm(32, out_channels, eps=1e-05, affine=True)
        self.dropout = nn.Dropout(p=0.0, inplace=False)
        self.conv2 = nn.Conv2d(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        self.nonlinearity = nn.SiLU()
        self.conv_shortcut = None
        if conv_shortcut:
            self.conv_shortcut = nn.Conv2d(
                in_channels, out_channels, kernel_size=1, stride=1
            )

    def forward(self, input_tensor, temb):
        hidden_states = input_tensor
        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.conv1(hidden_states)

        temb = self.nonlinearity(temb)
        temb = self.time_emb_proj(temb)[:, :, None, None]
        hidden_states = hidden_states + temb
        hidden_states = self.norm2(hidden_states)

        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = input_tensor + hidden_states

        return output_tensor


class Attention(nn.Module):
    def __init__(
        self, inner_dim, cross_attention_dim=None, num_heads=None, dropout=0.0, processor=None, scale_qk=True
    ):
        super(Attention, self).__init__()
        if num_heads is None:
            self.head_dim = 64
            self.num_heads = inner_dim // self.head_dim
        else:
            self.num_heads = num_heads
            self.head_dim = inner_dim // num_heads

        self.scale = self.head_dim**-0.5
        if cross_attention_dim is None:
            cross_attention_dim = inner_dim
        self.to_q = LoRACompatibleLinear(inner_dim, inner_dim, bias=False)
        self.to_k = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False)
        self.to_v = LoRACompatibleLinear(cross_attention_dim, inner_dim, bias=False)

        self.to_out = nn.ModuleList(
            [LoRACompatibleLinear(inner_dim, inner_dim), nn.Dropout(dropout, inplace=False)]
        )

        self.scale_qk = scale_qk
        if processor is None:
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
        self.set_processor(processor)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        **cross_attention_kwargs,
    ) -> torch.Tensor:
        r"""
        The forward method of the `Attention` class.

        Args:
            hidden_states (`torch.Tensor`):
                The hidden states of the query.
            encoder_hidden_states (`torch.Tensor`, *optional*):
                The hidden states of the encoder.
            attention_mask (`torch.Tensor`, *optional*):
                The attention mask to use. If `None`, no mask is applied.
            **cross_attention_kwargs:
                Additional keyword arguments to pass along to the cross attention.

        Returns:
            `torch.Tensor`: The output of the attention layer.
        """
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty

        attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
        unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
        if len(unused_kwargs) > 0:
            print(
                f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
            )
        cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}

        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
    
    def orig_forward(self, hidden_states, encoder_hidden_states=None):
        q = self.to_q(hidden_states)
        k = (
            self.to_k(encoder_hidden_states)
            if encoder_hidden_states is not None
            else self.to_k(hidden_states)
        )
        v = (
            self.to_v(encoder_hidden_states)
            if encoder_hidden_states is not None
            else self.to_v(hidden_states)
        )
        b, t, c = q.size()

        q = q.view(q.size(0), q.size(1), self.num_heads, self.head_dim).transpose(1, 2)
        k = k.view(k.size(0), k.size(1), self.num_heads, self.head_dim).transpose(1, 2)
        v = v.view(v.size(0), v.size(1), self.num_heads, self.head_dim).transpose(1, 2)

        # scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
        # attn_weights = torch.softmax(scores, dim=-1)
        # attn_output = torch.matmul(attn_weights, v)

        attn_output = F.scaled_dot_product_attention(
            q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale,
        )

        attn_output = attn_output.transpose(1, 2).contiguous().view(b, t, c)

        for layer in self.to_out:
            attn_output = layer(attn_output)

        return attn_output
    
    def set_processor(self, processor) -> None:
        r"""
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
        """
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            print(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor
    
    def get_processor(self, return_deprecated_lora: bool = False):
        r"""
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
        if not return_deprecated_lora:
            return self.processor

        # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
        # serialization format for LoRA Attention Processors. It should be deleted once the integration
        # with PEFT is completed.
        is_lora_activated = {
            name: module.lora_layer is not None
            for name, module in self.named_modules()
            if hasattr(module, "lora_layer")
        }

        # 1. if no layer has a LoRA activated we can return the processor as usual
        if not any(is_lora_activated.values()):
            return self.processor

        # If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
        is_lora_activated.pop("add_k_proj", None)
        is_lora_activated.pop("add_v_proj", None)
        # 2. else it is not possible that only some layers have LoRA activated
        if not all(is_lora_activated.values()):
            raise ValueError(
                f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
            )

        # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
        non_lora_processor_cls_name = self.processor.__class__.__name__
        lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)

        hidden_size = self.inner_dim

        # now create a LoRA attention processor from the LoRA layers
        if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
            kwargs = {
                "cross_attention_dim": self.cross_attention_dim,
                "rank": self.to_q.lora_layer.rank,
                "network_alpha": self.to_q.lora_layer.network_alpha,
                "q_rank": self.to_q.lora_layer.rank,
                "q_hidden_size": self.to_q.lora_layer.out_features,
                "k_rank": self.to_k.lora_layer.rank,
                "k_hidden_size": self.to_k.lora_layer.out_features,
                "v_rank": self.to_v.lora_layer.rank,
                "v_hidden_size": self.to_v.lora_layer.out_features,
                "out_rank": self.to_out[0].lora_layer.rank,
                "out_hidden_size": self.to_out[0].lora_layer.out_features,
            }

            if hasattr(self.processor, "attention_op"):
                kwargs["attention_op"] = self.processor.attention_op

            lora_processor = lora_processor_cls(hidden_size, **kwargs)
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
        elif lora_processor_cls == LoRAAttnAddedKVProcessor:
            lora_processor = lora_processor_cls(
                hidden_size,
                cross_attention_dim=self.add_k_proj.weight.shape[0],
                rank=self.to_q.lora_layer.rank,
                network_alpha=self.to_q.lora_layer.network_alpha,
            )
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())

            # only save if used
            if self.add_k_proj.lora_layer is not None:
                lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
                lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
            else:
                lora_processor.add_k_proj_lora = None
                lora_processor.add_v_proj_lora = None
        else:
            raise ValueError(f"{lora_processor_cls} does not exist.")

        return lora_processor
    
class GEGLU(nn.Module):
    def __init__(self, in_features, out_features):
        super(GEGLU, self).__init__()
        self.proj = nn.Linear(in_features, out_features * 2, bias=True)

    def forward(self, x):
        x_proj = self.proj(x)
        x1, x2 = x_proj.chunk(2, dim=-1)
        return x1 * torch.nn.functional.gelu(x2)


class FeedForward(nn.Module):
    def __init__(self, in_features, out_features):
        super(FeedForward, self).__init__()

        self.net = nn.ModuleList(
            [
                GEGLU(in_features, out_features * 4),
                nn.Dropout(p=0.0, inplace=False),
                nn.Linear(out_features * 4, out_features, bias=True),
            ]
        )

    def forward(self, x):
        for layer in self.net:
            x = layer(x)
        return x


class BasicTransformerBlock(nn.Module):
    def __init__(self, hidden_size):
        super(BasicTransformerBlock, self).__init__()
        self.norm1 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
        self.attn1 = Attention(hidden_size)
        self.norm2 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
        self.attn2 = Attention(hidden_size, 2048)
        self.norm3 = nn.LayerNorm(hidden_size, eps=1e-05, elementwise_affine=True)
        self.ff = FeedForward(hidden_size, hidden_size)

    def forward(self, x, encoder_hidden_states=None):
        residual = x

        x = self.norm1(x)
        x = self.attn1(x)
        x = x + residual

        residual = x

        x = self.norm2(x)
        if encoder_hidden_states is not None:
            x = self.attn2(x, encoder_hidden_states)
        else:
            x = self.attn2(x)
        x = x + residual

        residual = x

        x = self.norm3(x)
        x = self.ff(x)
        x = x + residual
        return x


class Transformer2DModel(nn.Module):
    def __init__(self, in_channels, out_channels, n_layers):
        super(Transformer2DModel, self).__init__()
        self.norm = nn.GroupNorm(32, in_channels, eps=1e-06, affine=True)
        self.proj_in = nn.Linear(in_channels, out_channels, bias=True)
        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(out_channels) for _ in range(n_layers)]
        )
        self.proj_out = nn.Linear(out_channels, out_channels, bias=True)

    def forward(self, hidden_states, encoder_hidden_states=None):
        batch, _, height, width = hidden_states.shape
        res = hidden_states
        hidden_states = self.norm(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
            batch, height * width, inner_dim
        )
        hidden_states = self.proj_in(hidden_states)

        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, encoder_hidden_states)

        hidden_states = self.proj_out(hidden_states)
        hidden_states = (
            hidden_states.reshape(batch, height, width, inner_dim)
            .permute(0, 3, 1, 2)
            .contiguous()
        )

        return hidden_states + res


class Downsample2D(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample2D, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, out_channels, kernel_size=3, stride=2, padding=1
        )

    def forward(self, x):
        return self.conv(x)


class Upsample2D(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Upsample2D, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, out_channels, kernel_size=3, stride=1, padding=1
        )

    def forward(self, x):
        x = F.interpolate(x, scale_factor=2.0, mode="nearest")
        return self.conv(x)


class DownBlock2D(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(DownBlock2D, self).__init__()
        self.resnets = nn.ModuleList(
            [
                ResnetBlock2D(in_channels, out_channels, conv_shortcut=False),
                ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
            ]
        )
        self.downsamplers = nn.ModuleList([Downsample2D(out_channels, out_channels)])

    def forward(self, hidden_states, temb):
        output_states = []
        for module in self.resnets:
            hidden_states = module(hidden_states, temb)
            output_states.append(hidden_states)

        hidden_states = self.downsamplers[0](hidden_states)
        output_states.append(hidden_states)

        return hidden_states, output_states


class CrossAttnDownBlock2D(nn.Module):
    def __init__(self, in_channels, out_channels, n_layers, has_downsamplers=True):
        super(CrossAttnDownBlock2D, self).__init__()
        self.attentions = nn.ModuleList(
            [
                Transformer2DModel(out_channels, out_channels, n_layers),
                Transformer2DModel(out_channels, out_channels, n_layers),
            ]
        )
        self.resnets = nn.ModuleList(
            [
                ResnetBlock2D(in_channels, out_channels),
                ResnetBlock2D(out_channels, out_channels, conv_shortcut=False),
            ]
        )
        self.downsamplers = None
        if has_downsamplers:
            self.downsamplers = nn.ModuleList(
                [Downsample2D(out_channels, out_channels)]
            )

    def forward(self, hidden_states, temb, encoder_hidden_states):
        output_states = []
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
            )
            output_states.append(hidden_states)

        if self.downsamplers is not None:
            hidden_states = self.downsamplers[0](hidden_states)
            output_states.append(hidden_states)

        return hidden_states, output_states


class CrossAttnUpBlock2D(nn.Module):
    def __init__(self, in_channels, out_channels, prev_output_channel, n_layers):
        super(CrossAttnUpBlock2D, self).__init__()
        self.attentions = nn.ModuleList(
            [
                Transformer2DModel(out_channels, out_channels, n_layers),
                Transformer2DModel(out_channels, out_channels, n_layers),
                Transformer2DModel(out_channels, out_channels, n_layers),
            ]
        )
        self.resnets = nn.ModuleList(
            [
                ResnetBlock2D(prev_output_channel + out_channels, out_channels),
                ResnetBlock2D(2 * out_channels, out_channels),
                ResnetBlock2D(out_channels + in_channels, out_channels),
            ]
        )
        self.upsamplers = nn.ModuleList([Upsample2D(out_channels, out_channels)])

    def forward(
        self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states
    ):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
            )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class UpBlock2D(nn.Module):
    def __init__(self, in_channels, out_channels, prev_output_channel):
        super(UpBlock2D, self).__init__()
        self.resnets = nn.ModuleList(
            [
                ResnetBlock2D(out_channels + prev_output_channel, out_channels),
                ResnetBlock2D(out_channels * 2, out_channels),
                ResnetBlock2D(out_channels + in_channels, out_channels),
            ]
        )

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None):

        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
            and getattr(self, "resolution_idx", None)
        )
                    
        for resnet in self.resnets:
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]


            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
            hidden_states = resnet(hidden_states, temb)

        return hidden_states

class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(self, in_features):
        super(UNetMidBlock2DCrossAttn, self).__init__()
        self.attentions = nn.ModuleList(
            [Transformer2DModel(in_features, in_features, n_layers=10)]
        )
        self.resnets = nn.ModuleList(
            [
                ResnetBlock2D(in_features, in_features, conv_shortcut=False),
                ResnetBlock2D(in_features, in_features, conv_shortcut=False),
            ]
        )

    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
            )
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


class UNet2DConditionModel(nn.Module):
    def __init__(self):
        super(UNet2DConditionModel, self).__init__()

        # This is needed to imitate huggingface config behavior
        # has nothing to do with the model itself
        # remove this if you don't use diffuser's pipeline
        self.config = namedtuple(
            "config", "in_channels addition_time_embed_dim sample_size"
        )
        self.config.in_channels = 4
        self.config.addition_time_embed_dim = 256
        self.config.sample_size = 128

        self.conv_in = nn.Conv2d(4, 320, kernel_size=3, stride=1, padding=1)
        self.time_proj = Timesteps()
        self.time_embedding = TimestepEmbedding(in_features=320, out_features=1280)
        self.add_time_proj = Timesteps(256)
        self.add_embedding = TimestepEmbedding(in_features=2816, out_features=1280)
        self.down_blocks = nn.ModuleList(
            [
                DownBlock2D(in_channels=320, out_channels=320),
                CrossAttnDownBlock2D(in_channels=320, out_channels=640, n_layers=2),
                CrossAttnDownBlock2D(
                    in_channels=640,
                    out_channels=1280,
                    n_layers=10,
                    has_downsamplers=False,
                ),
            ]
        )
        self.up_blocks = nn.ModuleList(
            [
                CrossAttnUpBlock2D(
                    in_channels=640,
                    out_channels=1280,
                    prev_output_channel=1280,
                    n_layers=10,
                ),
                CrossAttnUpBlock2D(
                    in_channels=320,
                    out_channels=640,
                    prev_output_channel=1280,
                    n_layers=2,
                ),
                UpBlock2D(in_channels=320, out_channels=320, prev_output_channel=640),
            ]
        )
        self.mid_block = UNetMidBlock2DCrossAttn(1280)
        self.conv_norm_out = nn.GroupNorm(32, 320, eps=1e-05, affine=True)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(320, 4, kernel_size=3, stride=1, padding=1)

    def forward(
        self, sample, timesteps, encoder_hidden_states, added_cond_kwargs, **kwargs
    ):
        # Implement the forward pass through the model
        timesteps = timesteps.expand(sample.shape[0])
        t_emb = self.time_proj(timesteps).to(dtype=sample.dtype)

        emb = self.time_embedding(t_emb)

        text_embeds = added_cond_kwargs.get("text_embeds")
        time_ids = added_cond_kwargs.get("time_ids")

        time_embeds = self.add_time_proj(time_ids.flatten())
        time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))

        add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
        add_embeds = add_embeds.to(emb.dtype)
        aug_emb = self.add_embedding(add_embeds)

        emb = emb + aug_emb

        sample = self.conv_in(sample)

        # 3. down
        s0 = sample
        sample, [s1, s2, s3] = self.down_blocks[0](
            sample,
            temb=emb,
        )

        sample, [s4, s5, s6] = self.down_blocks[1](
            sample,
            temb=emb,
            encoder_hidden_states=encoder_hidden_states,
        )

        sample, [s7, s8] = self.down_blocks[2](
            sample,
            temb=emb,
            encoder_hidden_states=encoder_hidden_states,
        )

        # 4. mid
        sample = self.mid_block(
            sample, emb, encoder_hidden_states=encoder_hidden_states
        )

        # 5. up
        sample = self.up_blocks[0](
            hidden_states=sample,
            temb=emb,
            res_hidden_states_tuple=[s6, s7, s8],
            encoder_hidden_states=encoder_hidden_states,
        )

        sample = self.up_blocks[1](
            hidden_states=sample,
            temb=emb,
            res_hidden_states_tuple=[s3, s4, s5],
            encoder_hidden_states=encoder_hidden_states,
        )

        sample = self.up_blocks[2](
            hidden_states=sample,
            temb=emb,
            res_hidden_states_tuple=[s0, s1, s2],
        )

        # 6. post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return [sample]