File size: 81,232 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Conversion script for the Stable Diffusion checkpoints."""

import re
from contextlib import nullcontext
from io import BytesIO
from typing import Dict, Optional, Union

import requests
import torch
import yaml
from transformers import (
    AutoFeatureExtractor,
    BertTokenizerFast,
    CLIPImageProcessor,
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from ...models import (
    AutoencoderKL,
    ControlNetModel,
    PriorTransformer,
    UNet2DConditionModel,
)
from ...schedulers import (
    DDIMScheduler,
    DDPMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    UnCLIPScheduler,
)
from ...utils import is_accelerate_available, logging
from ..latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
from ..paint_by_example import PaintByExampleImageEncoder
from ..pipeline_utils import DiffusionPipeline
from .safety_checker import StableDiffusionSafetyChecker
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer


if is_accelerate_available():
    from accelerate import init_empty_weights
    from accelerate.utils import set_module_tensor_to_device

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return ".".join(path.split(".")[n_shave_prefix_segments:])
    else:
        return ".".join(path.split(".")[:n_shave_prefix_segments])


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item.replace("in_layers.0", "norm1")
        new_item = new_item.replace("in_layers.2", "conv1")

        new_item = new_item.replace("out_layers.0", "norm2")
        new_item = new_item.replace("out_layers.3", "conv2")

        new_item = new_item.replace("emb_layers.1", "time_emb_proj")
        new_item = new_item.replace("skip_connection", "conv_shortcut")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("nin_shortcut", "conv_shortcut")
        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        #         new_item = new_item.replace('norm.weight', 'group_norm.weight')
        #         new_item = new_item.replace('norm.bias', 'group_norm.bias')

        #         new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
        #         new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')

        #         new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("norm.weight", "group_norm.weight")
        new_item = new_item.replace("norm.bias", "group_norm.bias")

        new_item = new_item.replace("q.weight", "to_q.weight")
        new_item = new_item.replace("q.bias", "to_q.bias")

        new_item = new_item.replace("k.weight", "to_k.weight")
        new_item = new_item.replace("k.bias", "to_k.bias")

        new_item = new_item.replace("v.weight", "to_v.weight")
        new_item = new_item.replace("v.bias", "to_v.bias")

        new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
        new_item = new_item.replace("proj_out.bias", "to_out.0.bias")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def assign_to_checkpoint(
    paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
):
    """
    This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
    attention layers, and takes into account additional replacements that may arise.

    Assigns the weights to the new checkpoint.
    """
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    # Splits the attention layers into three variables.
    if attention_paths_to_split is not None:
        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map["query"]] = query.reshape(target_shape)
            checkpoint[path_map["key"]] = key.reshape(target_shape)
            checkpoint[path_map["value"]] = value.reshape(target_shape)

    for path in paths:
        new_path = path["new"]

        # These have already been assigned
        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        # Global renaming happens here
        new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
        new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
        new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement["old"], replacement["new"])

        # proj_attn.weight has to be converted from conv 1D to linear
        is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path)
        shape = old_checkpoint[path["old"]].shape
        if is_attn_weight and len(shape) == 3:
            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
        elif is_attn_weight and len(shape) == 4:
            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
        else:
            checkpoint[new_path] = old_checkpoint[path["old"]]


def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["query.weight", "key.weight", "value.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]


def create_unet_diffusers_config(original_config, image_size: int, controlnet=False):
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
    if controlnet:
        unet_params = original_config["model"]["params"]["control_stage_config"]["params"]
    else:
        if (
            "unet_config" in original_config["model"]["params"]
            and original_config["model"]["params"]["unet_config"] is not None
        ):
            unet_params = original_config["model"]["params"]["unet_config"]["params"]
        else:
            unet_params = original_config["model"]["params"]["network_config"]["params"]

    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]

    block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]

    down_block_types = []
    resolution = 1
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
        down_block_types.append(block_type)
        if i != len(block_out_channels) - 1:
            resolution *= 2

    up_block_types = []
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
        up_block_types.append(block_type)
        resolution //= 2

    if unet_params["transformer_depth"] is not None:
        transformer_layers_per_block = (
            unet_params["transformer_depth"]
            if isinstance(unet_params["transformer_depth"], int)
            else list(unet_params["transformer_depth"])
        )
    else:
        transformer_layers_per_block = 1

    vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)

    head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
    use_linear_projection = (
        unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
    )
    if use_linear_projection:
        # stable diffusion 2-base-512 and 2-768
        if head_dim is None:
            head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"]
            head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])]

    class_embed_type = None
    addition_embed_type = None
    addition_time_embed_dim = None
    projection_class_embeddings_input_dim = None
    context_dim = None

    if unet_params["context_dim"] is not None:
        context_dim = (
            unet_params["context_dim"]
            if isinstance(unet_params["context_dim"], int)
            else unet_params["context_dim"][0]
        )

    if "num_classes" in unet_params:
        if unet_params["num_classes"] == "sequential":
            if context_dim in [2048, 1280]:
                # SDXL
                addition_embed_type = "text_time"
                addition_time_embed_dim = 256
            else:
                class_embed_type = "projection"
            assert "adm_in_channels" in unet_params
            projection_class_embeddings_input_dim = unet_params["adm_in_channels"]

    config = {
        "sample_size": image_size // vae_scale_factor,
        "in_channels": unet_params["in_channels"],
        "down_block_types": tuple(down_block_types),
        "block_out_channels": tuple(block_out_channels),
        "layers_per_block": unet_params["num_res_blocks"],
        "cross_attention_dim": context_dim,
        "attention_head_dim": head_dim,
        "use_linear_projection": use_linear_projection,
        "class_embed_type": class_embed_type,
        "addition_embed_type": addition_embed_type,
        "addition_time_embed_dim": addition_time_embed_dim,
        "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
        "transformer_layers_per_block": transformer_layers_per_block,
    }

    if "disable_self_attentions" in unet_params:
        config["only_cross_attention"] = unet_params["disable_self_attentions"]

    if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int):
        config["num_class_embeds"] = unet_params["num_classes"]

    if controlnet:
        config["conditioning_channels"] = unet_params["hint_channels"]
    else:
        config["out_channels"] = unet_params["out_channels"]
        config["up_block_types"] = tuple(up_block_types)

    return config


def create_vae_diffusers_config(original_config, image_size: int):
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
    _ = original_config["model"]["params"]["first_stage_config"]["params"]["embed_dim"]

    block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)

    config = {
        "sample_size": image_size,
        "in_channels": vae_params["in_channels"],
        "out_channels": vae_params["out_ch"],
        "down_block_types": tuple(down_block_types),
        "up_block_types": tuple(up_block_types),
        "block_out_channels": tuple(block_out_channels),
        "latent_channels": vae_params["z_channels"],
        "layers_per_block": vae_params["num_res_blocks"],
    }
    return config


def create_diffusers_schedular(original_config):
    schedular = DDIMScheduler(
        num_train_timesteps=original_config["model"]["params"]["timesteps"],
        beta_start=original_config["model"]["params"]["linear_start"],
        beta_end=original_config["model"]["params"]["linear_end"],
        beta_schedule="scaled_linear",
    )
    return schedular


def create_ldm_bert_config(original_config):
    bert_params = original_config["model"]["params"]["cond_stage_config"]["params"]
    config = LDMBertConfig(
        d_model=bert_params.n_embed,
        encoder_layers=bert_params.n_layer,
        encoder_ffn_dim=bert_params.n_embed * 4,
    )
    return config


def convert_ldm_unet_checkpoint(
    checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False
):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """

    if skip_extract_state_dict:
        unet_state_dict = checkpoint
    else:
        # extract state_dict for UNet
        unet_state_dict = {}
        keys = list(checkpoint.keys())

        if controlnet:
            unet_key = "control_model."
        else:
            unet_key = "model.diffusion_model."

        # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
        if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
            logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.")
            logger.warning(
                "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
                " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
            )
            for key in keys:
                if key.startswith("model.diffusion_model"):
                    flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
                    unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
        else:
            if sum(k.startswith("model_ema") for k in keys) > 100:
                logger.warning(
                    "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                    " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
                )

            for key in keys:
                if key.startswith(unet_key):
                    unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)

    new_checkpoint = {}

    new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
    new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
    new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
    new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]

    if config["class_embed_type"] is None:
        # No parameters to port
        ...
    elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
        new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
        new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
        new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
        new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
    else:
        raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")

    if config["addition_embed_type"] == "text_time":
        new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
        new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
        new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
        new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]

    # Relevant to StableDiffusionUpscalePipeline
    if "num_class_embeds" in config:
        if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict):
            new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"]

    new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
    new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]

    if not controlnet:
        new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
        new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
        new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
        new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]

        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.weight"
            )
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.bias"
            )

        paths = renew_resnet_paths(resnets)
        meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
        assign_to_checkpoint(
            paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
        )

        if len(attentions):
            paths = renew_attention_paths(attentions)

            meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

    resnet_0 = middle_blocks[0]
    attentions = middle_blocks[1]
    resnet_1 = middle_blocks[2]

    resnet_0_paths = renew_resnet_paths(resnet_0)
    assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)

    resnet_1_paths = renew_resnet_paths(resnet_1)
    assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)

    attentions_paths = renew_attention_paths(attentions)
    meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(
        attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
    )

    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)
        output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
        output_block_list = {}

        for layer in output_block_layers:
            layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
            if layer_id in output_block_list:
                output_block_list[layer_id].append(layer_name)
            else:
                output_block_list[layer_id] = [layer_name]

        if len(output_block_list) > 1:
            resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
            attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]

            resnet_0_paths = renew_resnet_paths(resnets)
            paths = renew_resnet_paths(resnets)

            meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

            output_block_list = {k: sorted(v) for k, v in sorted(output_block_list.items())}
            if ["conv.bias", "conv.weight"] in output_block_list.values():
                index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.weight"
                ]
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.bias"
                ]

                # Clear attentions as they have been attributed above.
                if len(attentions) == 2:
                    attentions = []

            if len(attentions):
                paths = renew_attention_paths(attentions)
                meta_path = {
                    "old": f"output_blocks.{i}.1",
                    "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
                }
                assign_to_checkpoint(
                    paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
                )
        else:
            resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
            for path in resnet_0_paths:
                old_path = ".".join(["output_blocks", str(i), path["old"]])
                new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])

                new_checkpoint[new_path] = unet_state_dict[old_path]

    if controlnet:
        # conditioning embedding

        orig_index = 0

        new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop(
            f"input_hint_block.{orig_index}.weight"
        )
        new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop(
            f"input_hint_block.{orig_index}.bias"
        )

        orig_index += 2

        diffusers_index = 0

        while diffusers_index < 6:
            new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop(
                f"input_hint_block.{orig_index}.weight"
            )
            new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop(
                f"input_hint_block.{orig_index}.bias"
            )
            diffusers_index += 1
            orig_index += 2

        new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop(
            f"input_hint_block.{orig_index}.weight"
        )
        new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop(
            f"input_hint_block.{orig_index}.bias"
        )

        # down blocks
        for i in range(num_input_blocks):
            new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight")
            new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias")

        # mid block
        new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight")
        new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias")

    return new_checkpoint


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    vae_state_dict = {}
    keys = list(checkpoint.keys())
    vae_key = "first_stage_model." if any(k.startswith("first_stage_model.") for k in keys) else ""
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}

    new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
    new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
    new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
    new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
    new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
    new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]

    new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
    new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
    new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
    new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
    new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
    new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]

    new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
    new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
    new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
    new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]

        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.weight"
            )
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.bias"
            )

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
    conv_attn_to_linear(new_checkpoint)

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]

        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
    conv_attn_to_linear(new_checkpoint)
    return new_checkpoint


def convert_ldm_bert_checkpoint(checkpoint, config):
    def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
        hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
        hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
        hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight

        hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
        hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias

    def _copy_linear(hf_linear, pt_linear):
        hf_linear.weight = pt_linear.weight
        hf_linear.bias = pt_linear.bias

    def _copy_layer(hf_layer, pt_layer):
        # copy layer norms
        _copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
        _copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])

        # copy attn
        _copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])

        # copy MLP
        pt_mlp = pt_layer[1][1]
        _copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
        _copy_linear(hf_layer.fc2, pt_mlp.net[2])

    def _copy_layers(hf_layers, pt_layers):
        for i, hf_layer in enumerate(hf_layers):
            if i != 0:
                i += i
            pt_layer = pt_layers[i : i + 2]
            _copy_layer(hf_layer, pt_layer)

    hf_model = LDMBertModel(config).eval()

    # copy  embeds
    hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
    hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight

    # copy layer norm
    _copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)

    # copy hidden layers
    _copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)

    _copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)

    return hf_model


def convert_ldm_clip_checkpoint(checkpoint, local_files_only=False, text_encoder=None):
    if text_encoder is None:
        config_name = "openai/clip-vit-large-patch14"
        try:
            config = CLIPTextConfig.from_pretrained(config_name, local_files_only=local_files_only)
        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the configuration in the following path: 'openai/clip-vit-large-patch14'."
            )

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            text_model = CLIPTextModel(config)
    else:
        text_model = text_encoder

    keys = list(checkpoint.keys())

    text_model_dict = {}

    remove_prefixes = ["cond_stage_model.transformer", "conditioner.embedders.0.transformer"]

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                text_model_dict[key[len(prefix + ".") :]] = checkpoint[key]

    if is_accelerate_available():
        for param_name, param in text_model_dict.items():
            set_module_tensor_to_device(text_model, param_name, "cpu", value=param)
    else:
        if not (hasattr(text_model, "embeddings") and hasattr(text_model.embeddings.position_ids)):
            text_model_dict.pop("text_model.embeddings.position_ids", None)

        text_model.load_state_dict(text_model_dict)

    return text_model


textenc_conversion_lst = [
    ("positional_embedding", "text_model.embeddings.position_embedding.weight"),
    ("token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
    ("ln_final.weight", "text_model.final_layer_norm.weight"),
    ("ln_final.bias", "text_model.final_layer_norm.bias"),
    ("text_projection", "text_projection.weight"),
]
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}

textenc_transformer_conversion_lst = [
    # (stable-diffusion, HF Diffusers)
    ("resblocks.", "text_model.encoder.layers."),
    ("ln_1", "layer_norm1"),
    ("ln_2", "layer_norm2"),
    (".c_fc.", ".fc1."),
    (".c_proj.", ".fc2."),
    (".attn", ".self_attn"),
    ("ln_final.", "transformer.text_model.final_layer_norm."),
    ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
    ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
]
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
textenc_pattern = re.compile("|".join(protected.keys()))


def convert_paint_by_example_checkpoint(checkpoint, local_files_only=False):
    config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14", local_files_only=local_files_only)
    model = PaintByExampleImageEncoder(config)

    keys = list(checkpoint.keys())

    text_model_dict = {}

    for key in keys:
        if key.startswith("cond_stage_model.transformer"):
            text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]

    # load clip vision
    model.model.load_state_dict(text_model_dict)

    # load mapper
    keys_mapper = {
        k[len("cond_stage_model.mapper.res") :]: v
        for k, v in checkpoint.items()
        if k.startswith("cond_stage_model.mapper")
    }

    MAPPING = {
        "attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
        "attn.c_proj": ["attn1.to_out.0"],
        "ln_1": ["norm1"],
        "ln_2": ["norm3"],
        "mlp.c_fc": ["ff.net.0.proj"],
        "mlp.c_proj": ["ff.net.2"],
    }

    mapped_weights = {}
    for key, value in keys_mapper.items():
        prefix = key[: len("blocks.i")]
        suffix = key.split(prefix)[-1].split(".")[-1]
        name = key.split(prefix)[-1].split(suffix)[0][1:-1]
        mapped_names = MAPPING[name]

        num_splits = len(mapped_names)
        for i, mapped_name in enumerate(mapped_names):
            new_name = ".".join([prefix, mapped_name, suffix])
            shape = value.shape[0] // num_splits
            mapped_weights[new_name] = value[i * shape : (i + 1) * shape]

    model.mapper.load_state_dict(mapped_weights)

    # load final layer norm
    model.final_layer_norm.load_state_dict(
        {
            "bias": checkpoint["cond_stage_model.final_ln.bias"],
            "weight": checkpoint["cond_stage_model.final_ln.weight"],
        }
    )

    # load final proj
    model.proj_out.load_state_dict(
        {
            "bias": checkpoint["proj_out.bias"],
            "weight": checkpoint["proj_out.weight"],
        }
    )

    # load uncond vector
    model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
    return model


def convert_open_clip_checkpoint(
    checkpoint,
    config_name,
    prefix="cond_stage_model.model.",
    has_projection=False,
    local_files_only=False,
    **config_kwargs,
):
    # text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder")
    # text_model = CLIPTextModelWithProjection.from_pretrained(
    #    "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", projection_dim=1280
    # )
    try:
        config = CLIPTextConfig.from_pretrained(config_name, **config_kwargs, local_files_only=local_files_only)
    except Exception:
        raise ValueError(
            f"With local_files_only set to {local_files_only}, you must first locally save the configuration in the following path: '{config_name}'."
        )

    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        text_model = CLIPTextModelWithProjection(config) if has_projection else CLIPTextModel(config)

    keys = list(checkpoint.keys())

    keys_to_ignore = []
    if config_name == "stabilityai/stable-diffusion-2" and config.num_hidden_layers == 23:
        # make sure to remove all keys > 22
        keys_to_ignore += [k for k in keys if k.startswith("cond_stage_model.model.transformer.resblocks.23")]
        keys_to_ignore += ["cond_stage_model.model.text_projection"]

    text_model_dict = {}

    if prefix + "text_projection" in checkpoint:
        d_model = int(checkpoint[prefix + "text_projection"].shape[0])
    else:
        d_model = 1024

    text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")

    for key in keys:
        if key in keys_to_ignore:
            continue
        if key[len(prefix) :] in textenc_conversion_map:
            if key.endswith("text_projection"):
                value = checkpoint[key].T.contiguous()
            else:
                value = checkpoint[key]

            text_model_dict[textenc_conversion_map[key[len(prefix) :]]] = value

        if key.startswith(prefix + "transformer."):
            new_key = key[len(prefix + "transformer.") :]
            if new_key.endswith(".in_proj_weight"):
                new_key = new_key[: -len(".in_proj_weight")]
                new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
                text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
                text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
                text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
            elif new_key.endswith(".in_proj_bias"):
                new_key = new_key[: -len(".in_proj_bias")]
                new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
                text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
                text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
                text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
            else:
                new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)

                text_model_dict[new_key] = checkpoint[key]

    if is_accelerate_available():
        for param_name, param in text_model_dict.items():
            set_module_tensor_to_device(text_model, param_name, "cpu", value=param)
    else:
        if not (hasattr(text_model, "embeddings") and hasattr(text_model.embeddings.position_ids)):
            text_model_dict.pop("text_model.embeddings.position_ids", None)

        text_model.load_state_dict(text_model_dict)

    return text_model


def stable_unclip_image_encoder(original_config, local_files_only=False):
    """
    Returns the image processor and clip image encoder for the img2img unclip pipeline.

    We currently know of two types of stable unclip models which separately use the clip and the openclip image
    encoders.
    """

    image_embedder_config = original_config["model"]["params"]["embedder_config"]

    sd_clip_image_embedder_class = image_embedder_config["target"]
    sd_clip_image_embedder_class = sd_clip_image_embedder_class.split(".")[-1]

    if sd_clip_image_embedder_class == "ClipImageEmbedder":
        clip_model_name = image_embedder_config.params.model

        if clip_model_name == "ViT-L/14":
            feature_extractor = CLIPImageProcessor()
            image_encoder = CLIPVisionModelWithProjection.from_pretrained(
                "openai/clip-vit-large-patch14", local_files_only=local_files_only
            )
        else:
            raise NotImplementedError(f"Unknown CLIP checkpoint name in stable diffusion checkpoint {clip_model_name}")

    elif sd_clip_image_embedder_class == "FrozenOpenCLIPImageEmbedder":
        feature_extractor = CLIPImageProcessor()
        image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", local_files_only=local_files_only
        )
    else:
        raise NotImplementedError(
            f"Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}"
        )

    return feature_extractor, image_encoder


def stable_unclip_image_noising_components(
    original_config, clip_stats_path: Optional[str] = None, device: Optional[str] = None
):
    """
    Returns the noising components for the img2img and txt2img unclip pipelines.

    Converts the stability noise augmentor into
    1. a `StableUnCLIPImageNormalizer` for holding the CLIP stats
    2. a `DDPMScheduler` for holding the noise schedule

    If the noise augmentor config specifies a clip stats path, the `clip_stats_path` must be provided.
    """
    noise_aug_config = original_config["model"]["params"]["noise_aug_config"]
    noise_aug_class = noise_aug_config["target"]
    noise_aug_class = noise_aug_class.split(".")[-1]

    if noise_aug_class == "CLIPEmbeddingNoiseAugmentation":
        noise_aug_config = noise_aug_config.params
        embedding_dim = noise_aug_config.timestep_dim
        max_noise_level = noise_aug_config.noise_schedule_config.timesteps
        beta_schedule = noise_aug_config.noise_schedule_config.beta_schedule

        image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedding_dim)
        image_noising_scheduler = DDPMScheduler(num_train_timesteps=max_noise_level, beta_schedule=beta_schedule)

        if "clip_stats_path" in noise_aug_config:
            if clip_stats_path is None:
                raise ValueError("This stable unclip config requires a `clip_stats_path`")

            clip_mean, clip_std = torch.load(clip_stats_path, map_location=device)
            clip_mean = clip_mean[None, :]
            clip_std = clip_std[None, :]

            clip_stats_state_dict = {
                "mean": clip_mean,
                "std": clip_std,
            }

            image_normalizer.load_state_dict(clip_stats_state_dict)
    else:
        raise NotImplementedError(f"Unknown noise augmentor class: {noise_aug_class}")

    return image_normalizer, image_noising_scheduler


def convert_controlnet_checkpoint(
    checkpoint,
    original_config,
    checkpoint_path,
    image_size,
    upcast_attention,
    extract_ema,
    use_linear_projection=None,
    cross_attention_dim=None,
):
    ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True)
    ctrlnet_config["upcast_attention"] = upcast_attention

    ctrlnet_config.pop("sample_size")

    if use_linear_projection is not None:
        ctrlnet_config["use_linear_projection"] = use_linear_projection

    if cross_attention_dim is not None:
        ctrlnet_config["cross_attention_dim"] = cross_attention_dim

    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        controlnet = ControlNetModel(**ctrlnet_config)

    # Some controlnet ckpt files are distributed independently from the rest of the
    # model components i.e. https://huggingface.co./thibaud/controlnet-sd21/
    if "time_embed.0.weight" in checkpoint:
        skip_extract_state_dict = True
    else:
        skip_extract_state_dict = False

    converted_ctrl_checkpoint = convert_ldm_unet_checkpoint(
        checkpoint,
        ctrlnet_config,
        path=checkpoint_path,
        extract_ema=extract_ema,
        controlnet=True,
        skip_extract_state_dict=skip_extract_state_dict,
    )

    if is_accelerate_available():
        for param_name, param in converted_ctrl_checkpoint.items():
            set_module_tensor_to_device(controlnet, param_name, "cpu", value=param)
    else:
        controlnet.load_state_dict(converted_ctrl_checkpoint)

    return controlnet


def download_from_original_stable_diffusion_ckpt(
    checkpoint_path_or_dict: Union[str, Dict[str, torch.Tensor]],
    original_config_file: str = None,
    image_size: Optional[int] = None,
    prediction_type: str = None,
    model_type: str = None,
    extract_ema: bool = False,
    scheduler_type: str = "pndm",
    num_in_channels: Optional[int] = None,
    upcast_attention: Optional[bool] = None,
    device: str = None,
    from_safetensors: bool = False,
    stable_unclip: Optional[str] = None,
    stable_unclip_prior: Optional[str] = None,
    clip_stats_path: Optional[str] = None,
    controlnet: Optional[bool] = None,
    adapter: Optional[bool] = None,
    load_safety_checker: bool = True,
    safety_checker: Optional[StableDiffusionSafetyChecker] = None,
    feature_extractor: Optional[AutoFeatureExtractor] = None,
    pipeline_class: DiffusionPipeline = None,
    local_files_only=False,
    vae_path=None,
    vae=None,
    text_encoder=None,
    text_encoder_2=None,
    tokenizer=None,
    tokenizer_2=None,
    config_files=None,
) -> DiffusionPipeline:
    """
    Load a Stable Diffusion pipeline object from a CompVis-style `.ckpt`/`.safetensors` file and (ideally) a `.yaml`
    config file.

    Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the
    global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is
    recommended that you override the default values and/or supply an `original_config_file` wherever possible.

    Args:
        checkpoint_path_or_dict (`str` or `dict`): Path to `.ckpt` file, or the state dict.
        original_config_file (`str`):
            Path to `.yaml` config file corresponding to the original architecture. If `None`, will be automatically
            inferred by looking for a key that only exists in SD2.0 models.
        image_size (`int`, *optional*, defaults to 512):
            The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Diffusion v2
            Base. Use 768 for Stable Diffusion v2.
        prediction_type (`str`, *optional*):
            The prediction type that the model was trained on. Use `'epsilon'` for Stable Diffusion v1.X and Stable
            Diffusion v2 Base. Use `'v_prediction'` for Stable Diffusion v2.
        num_in_channels (`int`, *optional*, defaults to None):
            The number of input channels. If `None`, it will be automatically inferred.
        scheduler_type (`str`, *optional*, defaults to 'pndm'):
            Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
            "ddim"]`.
        model_type (`str`, *optional*, defaults to `None`):
            The pipeline type. `None` to automatically infer, or one of `["FrozenOpenCLIPEmbedder",
            "FrozenCLIPEmbedder", "PaintByExample"]`.
        is_img2img (`bool`, *optional*, defaults to `False`):
            Whether the model should be loaded as an img2img pipeline.
        extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for
            checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults to
            `False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for
            inference. Non-EMA weights are usually better to continue fine-tuning.
        upcast_attention (`bool`, *optional*, defaults to `None`):
            Whether the attention computation should always be upcasted. This is necessary when running stable
            diffusion 2.1.
        device (`str`, *optional*, defaults to `None`):
            The device to use. Pass `None` to determine automatically.
        from_safetensors (`str`, *optional*, defaults to `False`):
            If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.
        load_safety_checker (`bool`, *optional*, defaults to `True`):
            Whether to load the safety checker or not. Defaults to `True`.
        safety_checker (`StableDiffusionSafetyChecker`, *optional*, defaults to `None`):
            Safety checker to use. If this parameter is `None`, the function will load a new instance of
            [StableDiffusionSafetyChecker] by itself, if needed.
        feature_extractor (`AutoFeatureExtractor`, *optional*, defaults to `None`):
            Feature extractor to use. If this parameter is `None`, the function will load a new instance of
            [AutoFeatureExtractor] by itself, if needed.
        pipeline_class (`str`, *optional*, defaults to `None`):
            The pipeline class to use. Pass `None` to determine automatically.
        local_files_only (`bool`, *optional*, defaults to `False`):
            Whether or not to only look at local files (i.e., do not try to download the model).
        vae (`AutoencoderKL`, *optional*, defaults to `None`):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
            this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
        text_encoder (`CLIPTextModel`, *optional*, defaults to `None`):
            An instance of [CLIP](https://huggingface.co./docs/transformers/model_doc/clip#transformers.CLIPTextModel)
            to use, specifically the [clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)
            variant. If this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
        tokenizer (`CLIPTokenizer`, *optional*, defaults to `None`):
            An instance of
            [CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
            to use. If this parameter is `None`, the function will load a new instance of [CLIPTokenizer] by itself, if
            needed.
        config_files (`Dict[str, str]`, *optional*, defaults to `None`):
            A dictionary mapping from config file names to their contents. If this parameter is `None`, the function
            will load the config files by itself, if needed. Valid keys are:
                - `v1`: Config file for Stable Diffusion v1
                - `v2`: Config file for Stable Diffusion v2
                - `xl`: Config file for Stable Diffusion XL
                - `xl_refiner`: Config file for Stable Diffusion XL Refiner
        return: A StableDiffusionPipeline object representing the passed-in `.ckpt`/`.safetensors` file.
    """

    # import pipelines here to avoid circular import error when using from_single_file method
    from diffusers import (
        LDMTextToImagePipeline,
        PaintByExamplePipeline,
        StableDiffusionControlNetPipeline,
        StableDiffusionInpaintPipeline,
        StableDiffusionPipeline,
        StableDiffusionUpscalePipeline,
        StableDiffusionXLControlNetInpaintPipeline,
        StableDiffusionXLImg2ImgPipeline,
        StableDiffusionXLInpaintPipeline,
        StableDiffusionXLPipeline,
        StableUnCLIPImg2ImgPipeline,
        StableUnCLIPPipeline,
    )

    if prediction_type == "v-prediction":
        prediction_type = "v_prediction"

    if isinstance(checkpoint_path_or_dict, str):
        if from_safetensors:
            from safetensors.torch import load_file as safe_load

            checkpoint = safe_load(checkpoint_path_or_dict, device="cpu")
        else:
            if device is None:
                device = "cuda" if torch.cuda.is_available() else "cpu"
                checkpoint = torch.load(checkpoint_path_or_dict, map_location=device)
            else:
                checkpoint = torch.load(checkpoint_path_or_dict, map_location=device)
    elif isinstance(checkpoint_path_or_dict, dict):
        checkpoint = checkpoint_path_or_dict

    # Sometimes models don't have the global_step item
    if "global_step" in checkpoint:
        global_step = checkpoint["global_step"]
    else:
        logger.debug("global_step key not found in model")
        global_step = None

    # NOTE: this while loop isn't great but this controlnet checkpoint has one additional
    # "state_dict" key https://huggingface.co./thibaud/controlnet-canny-sd21
    while "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]

    if original_config_file is None:
        key_name_v2_1 = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
        key_name_sd_xl_base = "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias"
        key_name_sd_xl_refiner = "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias"
        is_upscale = pipeline_class == StableDiffusionUpscalePipeline

        config_url = None

        # model_type = "v1"
        if config_files is not None and "v1" in config_files:
            original_config_file = config_files["v1"]
        else:
            config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"

        if key_name_v2_1 in checkpoint and checkpoint[key_name_v2_1].shape[-1] == 1024:
            # model_type = "v2"
            if config_files is not None and "v2" in config_files:
                original_config_file = config_files["v2"]
            else:
                config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
            if global_step == 110000:
                # v2.1 needs to upcast attention
                upcast_attention = True
        elif key_name_sd_xl_base in checkpoint:
            # only base xl has two text embedders
            if config_files is not None and "xl" in config_files:
                original_config_file = config_files["xl"]
            else:
                config_url = "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml"
        elif key_name_sd_xl_refiner in checkpoint:
            # only refiner xl has embedder and one text embedders
            if config_files is not None and "xl_refiner" in config_files:
                original_config_file = config_files["xl_refiner"]
            else:
                config_url = "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_refiner.yaml"

        if is_upscale:
            config_url = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml"

        if config_url is not None:
            original_config_file = BytesIO(requests.get(config_url).content)
        else:
            with open(original_config_file, "r") as f:
                original_config_file = f.read()
    else:
        with open(original_config_file, "r") as f:
            original_config_file = f.read()

    original_config = yaml.safe_load(original_config_file)

    # Convert the text model.
    if (
        model_type is None
        and "cond_stage_config" in original_config["model"]["params"]
        and original_config["model"]["params"]["cond_stage_config"] is not None
    ):
        model_type = original_config["model"]["params"]["cond_stage_config"]["target"].split(".")[-1]
        logger.debug(f"no `model_type` given, `model_type` inferred as: {model_type}")
    elif model_type is None and original_config["model"]["params"]["network_config"] is not None:
        if original_config["model"]["params"]["network_config"]["params"]["context_dim"] == 2048:
            model_type = "SDXL"
        else:
            model_type = "SDXL-Refiner"
        if image_size is None:
            image_size = 1024

    if pipeline_class is None:
        # Check if we have a SDXL or SD model and initialize default pipeline
        if model_type not in ["SDXL", "SDXL-Refiner"]:
            pipeline_class = StableDiffusionPipeline if not controlnet else StableDiffusionControlNetPipeline
        else:
            pipeline_class = StableDiffusionXLPipeline if model_type == "SDXL" else StableDiffusionXLImg2ImgPipeline

    if num_in_channels is None and pipeline_class in [
        StableDiffusionInpaintPipeline,
        StableDiffusionXLInpaintPipeline,
        StableDiffusionXLControlNetInpaintPipeline,
    ]:
        num_in_channels = 9
    if num_in_channels is None and pipeline_class == StableDiffusionUpscalePipeline:
        num_in_channels = 7
    elif num_in_channels is None:
        num_in_channels = 4

    if "unet_config" in original_config["model"]["params"]:
        original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels

    if (
        "parameterization" in original_config["model"]["params"]
        and original_config["model"]["params"]["parameterization"] == "v"
    ):
        if prediction_type is None:
            # NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
            # as it relies on a brittle global step parameter here
            prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
        if image_size is None:
            # NOTE: For stable diffusion 2 base one has to pass `image_size==512`
            # as it relies on a brittle global step parameter here
            image_size = 512 if global_step == 875000 else 768
    else:
        if prediction_type is None:
            prediction_type = "epsilon"
        if image_size is None:
            image_size = 512

    if controlnet is None and "control_stage_config" in original_config["model"]["params"]:
        path = checkpoint_path_or_dict if isinstance(checkpoint_path_or_dict, str) else ""
        controlnet = convert_controlnet_checkpoint(
            checkpoint, original_config, path, image_size, upcast_attention, extract_ema
        )

    if "timesteps" in original_config["model"]["params"]:
        num_train_timesteps = original_config["model"]["params"]["timesteps"]
    else:
        num_train_timesteps = 1000

    if model_type in ["SDXL", "SDXL-Refiner"]:
        scheduler_dict = {
            "beta_schedule": "scaled_linear",
            "beta_start": 0.00085,
            "beta_end": 0.012,
            "interpolation_type": "linear",
            "num_train_timesteps": num_train_timesteps,
            "prediction_type": "epsilon",
            "sample_max_value": 1.0,
            "set_alpha_to_one": False,
            "skip_prk_steps": True,
            "steps_offset": 1,
            "timestep_spacing": "leading",
        }
        scheduler = EulerDiscreteScheduler.from_config(scheduler_dict)
        scheduler_type = "euler"
    else:
        if "linear_start" in original_config["model"]["params"]:
            beta_start = original_config["model"]["params"]["linear_start"]
        else:
            beta_start = 0.02

        if "linear_end" in original_config["model"]["params"]:
            beta_end = original_config["model"]["params"]["linear_end"]
        else:
            beta_end = 0.085
        scheduler = DDIMScheduler(
            beta_end=beta_end,
            beta_schedule="scaled_linear",
            beta_start=beta_start,
            num_train_timesteps=num_train_timesteps,
            steps_offset=1,
            clip_sample=False,
            set_alpha_to_one=False,
            prediction_type=prediction_type,
        )
    # make sure scheduler works correctly with DDIM
    scheduler.register_to_config(clip_sample=False)

    if scheduler_type == "pndm":
        config = dict(scheduler.config)
        config["skip_prk_steps"] = True
        scheduler = PNDMScheduler.from_config(config)
    elif scheduler_type == "lms":
        scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
    elif scheduler_type == "heun":
        scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
    elif scheduler_type == "euler":
        scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
    elif scheduler_type == "euler-ancestral":
        scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
    elif scheduler_type == "dpm":
        scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
    elif scheduler_type == "ddim":
        scheduler = scheduler
    else:
        raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")

    if pipeline_class == StableDiffusionUpscalePipeline:
        image_size = original_config["model"]["params"]["unet_config"]["params"]["image_size"]

    # Convert the UNet2DConditionModel model.
    unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
    unet_config["upcast_attention"] = upcast_attention

    path = checkpoint_path_or_dict if isinstance(checkpoint_path_or_dict, str) else ""
    converted_unet_checkpoint = convert_ldm_unet_checkpoint(
        checkpoint, unet_config, path=path, extract_ema=extract_ema
    )

    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        unet = UNet2DConditionModel(**unet_config)

    if is_accelerate_available():
        if model_type not in ["SDXL", "SDXL-Refiner"]:  # SBM Delay this.
            for param_name, param in converted_unet_checkpoint.items():
                set_module_tensor_to_device(unet, param_name, "cpu", value=param)
    else:
        unet.load_state_dict(converted_unet_checkpoint)

    # Convert the VAE model.
    if vae_path is None and vae is None:
        vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
        converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)

        if (
            "model" in original_config
            and "params" in original_config["model"]
            and "scale_factor" in original_config["model"]["params"]
        ):
            vae_scaling_factor = original_config["model"]["params"]["scale_factor"]
        else:
            vae_scaling_factor = 0.18215  # default SD scaling factor

        vae_config["scaling_factor"] = vae_scaling_factor

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            vae = AutoencoderKL(**vae_config)

        if is_accelerate_available():
            for param_name, param in converted_vae_checkpoint.items():
                set_module_tensor_to_device(vae, param_name, "cpu", value=param)
        else:
            vae.load_state_dict(converted_vae_checkpoint)
    elif vae is None:
        vae = AutoencoderKL.from_pretrained(vae_path, local_files_only=local_files_only)

    if model_type == "FrozenOpenCLIPEmbedder":
        config_name = "stabilityai/stable-diffusion-2"
        config_kwargs = {"subfolder": "text_encoder"}

        if text_encoder is None:
            text_model = convert_open_clip_checkpoint(
                checkpoint, config_name, local_files_only=local_files_only, **config_kwargs
            )
        else:
            text_model = text_encoder

        try:
            tokenizer = CLIPTokenizer.from_pretrained(
                "stabilityai/stable-diffusion-2", subfolder="tokenizer", local_files_only=local_files_only
            )
        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'stabilityai/stable-diffusion-2'."
            )

        if stable_unclip is None:
            if controlnet:
                pipe = pipeline_class(
                    vae=vae,
                    text_encoder=text_model,
                    tokenizer=tokenizer,
                    unet=unet,
                    scheduler=scheduler,
                    controlnet=controlnet,
                    safety_checker=safety_checker,
                    feature_extractor=feature_extractor,
                )
                if hasattr(pipe, "requires_safety_checker"):
                    pipe.requires_safety_checker = False

            elif pipeline_class == StableDiffusionUpscalePipeline:
                scheduler = DDIMScheduler.from_pretrained(
                    "stabilityai/stable-diffusion-x4-upscaler", subfolder="scheduler"
                )
                low_res_scheduler = DDPMScheduler.from_pretrained(
                    "stabilityai/stable-diffusion-x4-upscaler", subfolder="low_res_scheduler"
                )

                pipe = pipeline_class(
                    vae=vae,
                    text_encoder=text_model,
                    tokenizer=tokenizer,
                    unet=unet,
                    scheduler=scheduler,
                    low_res_scheduler=low_res_scheduler,
                    safety_checker=safety_checker,
                    feature_extractor=feature_extractor,
                )

            else:
                pipe = pipeline_class(
                    vae=vae,
                    text_encoder=text_model,
                    tokenizer=tokenizer,
                    unet=unet,
                    scheduler=scheduler,
                    safety_checker=safety_checker,
                    feature_extractor=feature_extractor,
                )
                if hasattr(pipe, "requires_safety_checker"):
                    pipe.requires_safety_checker = False

        else:
            image_normalizer, image_noising_scheduler = stable_unclip_image_noising_components(
                original_config, clip_stats_path=clip_stats_path, device=device
            )

            if stable_unclip == "img2img":
                feature_extractor, image_encoder = stable_unclip_image_encoder(original_config)

                pipe = StableUnCLIPImg2ImgPipeline(
                    # image encoding components
                    feature_extractor=feature_extractor,
                    image_encoder=image_encoder,
                    # image noising components
                    image_normalizer=image_normalizer,
                    image_noising_scheduler=image_noising_scheduler,
                    # regular denoising components
                    tokenizer=tokenizer,
                    text_encoder=text_model,
                    unet=unet,
                    scheduler=scheduler,
                    # vae
                    vae=vae,
                )
            elif stable_unclip == "txt2img":
                if stable_unclip_prior is None or stable_unclip_prior == "karlo":
                    karlo_model = "kakaobrain/karlo-v1-alpha"
                    prior = PriorTransformer.from_pretrained(
                        karlo_model, subfolder="prior", local_files_only=local_files_only
                    )

                    try:
                        prior_tokenizer = CLIPTokenizer.from_pretrained(
                            "openai/clip-vit-large-patch14", local_files_only=local_files_only
                        )
                    except Exception:
                        raise ValueError(
                            f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'openai/clip-vit-large-patch14'."
                        )
                    prior_text_model = CLIPTextModelWithProjection.from_pretrained(
                        "openai/clip-vit-large-patch14", local_files_only=local_files_only
                    )

                    prior_scheduler = UnCLIPScheduler.from_pretrained(
                        karlo_model, subfolder="prior_scheduler", local_files_only=local_files_only
                    )
                    prior_scheduler = DDPMScheduler.from_config(prior_scheduler.config)
                else:
                    raise NotImplementedError(f"unknown prior for stable unclip model: {stable_unclip_prior}")

                pipe = StableUnCLIPPipeline(
                    # prior components
                    prior_tokenizer=prior_tokenizer,
                    prior_text_encoder=prior_text_model,
                    prior=prior,
                    prior_scheduler=prior_scheduler,
                    # image noising components
                    image_normalizer=image_normalizer,
                    image_noising_scheduler=image_noising_scheduler,
                    # regular denoising components
                    tokenizer=tokenizer,
                    text_encoder=text_model,
                    unet=unet,
                    scheduler=scheduler,
                    # vae
                    vae=vae,
                )
            else:
                raise NotImplementedError(f"unknown `stable_unclip` type: {stable_unclip}")
    elif model_type == "PaintByExample":
        vision_model = convert_paint_by_example_checkpoint(checkpoint)
        try:
            tokenizer = CLIPTokenizer.from_pretrained(
                "openai/clip-vit-large-patch14", local_files_only=local_files_only
            )
        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'openai/clip-vit-large-patch14'."
            )
        try:
            feature_extractor = AutoFeatureExtractor.from_pretrained(
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
            )
        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the feature_extractor in the following path: 'CompVis/stable-diffusion-safety-checker'."
            )
        pipe = PaintByExamplePipeline(
            vae=vae,
            image_encoder=vision_model,
            unet=unet,
            scheduler=scheduler,
            safety_checker=None,
            feature_extractor=feature_extractor,
        )
    elif model_type == "FrozenCLIPEmbedder":
        text_model = convert_ldm_clip_checkpoint(
            checkpoint, local_files_only=local_files_only, text_encoder=text_encoder
        )
        try:
            tokenizer = (
                CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", local_files_only=local_files_only)
                if tokenizer is None
                else tokenizer
            )
        except Exception:
            raise ValueError(
                f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'openai/clip-vit-large-patch14'."
            )

        if load_safety_checker:
            safety_checker = StableDiffusionSafetyChecker.from_pretrained(
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
            )
            feature_extractor = AutoFeatureExtractor.from_pretrained(
                "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
            )

        if controlnet:
            pipe = pipeline_class(
                vae=vae,
                text_encoder=text_model,
                tokenizer=tokenizer,
                unet=unet,
                controlnet=controlnet,
                scheduler=scheduler,
                safety_checker=safety_checker,
                feature_extractor=feature_extractor,
            )
        else:
            pipe = pipeline_class(
                vae=vae,
                text_encoder=text_model,
                tokenizer=tokenizer,
                unet=unet,
                scheduler=scheduler,
                safety_checker=safety_checker,
                feature_extractor=feature_extractor,
            )
    elif model_type in ["SDXL", "SDXL-Refiner"]:
        is_refiner = model_type == "SDXL-Refiner"

        if (is_refiner is False) and (tokenizer is None):
            try:
                tokenizer = CLIPTokenizer.from_pretrained(
                    "openai/clip-vit-large-patch14", local_files_only=local_files_only
                )
            except Exception:
                raise ValueError(
                    f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'openai/clip-vit-large-patch14'."
                )

        if (is_refiner is False) and (text_encoder is None):
            text_encoder = convert_ldm_clip_checkpoint(checkpoint, local_files_only=local_files_only)

        if tokenizer_2 is None:
            try:
                tokenizer_2 = CLIPTokenizer.from_pretrained(
                    "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", pad_token="!", local_files_only=local_files_only
                )
            except Exception:
                raise ValueError(
                    f"With local_files_only set to {local_files_only}, you must first locally save the tokenizer in the following path: 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' with `pad_token` set to '!'."
                )

        if text_encoder_2 is None:
            config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
            config_kwargs = {"projection_dim": 1280}
            prefix = "conditioner.embedders.0.model." if is_refiner else "conditioner.embedders.1.model."

            text_encoder_2 = convert_open_clip_checkpoint(
                checkpoint,
                config_name,
                prefix=prefix,
                has_projection=True,
                local_files_only=local_files_only,
                **config_kwargs,
            )

        if is_accelerate_available():  # SBM Now move model to cpu.
            for param_name, param in converted_unet_checkpoint.items():
                set_module_tensor_to_device(unet, param_name, "cpu", value=param)

        if controlnet:
            pipe = pipeline_class(
                vae=vae,
                text_encoder=text_encoder,
                tokenizer=tokenizer,
                text_encoder_2=text_encoder_2,
                tokenizer_2=tokenizer_2,
                unet=unet,
                controlnet=controlnet,
                scheduler=scheduler,
                force_zeros_for_empty_prompt=True,
            )
        elif adapter:
            pipe = pipeline_class(
                vae=vae,
                text_encoder=text_encoder,
                tokenizer=tokenizer,
                text_encoder_2=text_encoder_2,
                tokenizer_2=tokenizer_2,
                unet=unet,
                adapter=adapter,
                scheduler=scheduler,
                force_zeros_for_empty_prompt=True,
            )

        else:
            pipeline_kwargs = {
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "text_encoder_2": text_encoder_2,
                "tokenizer_2": tokenizer_2,
                "unet": unet,
                "scheduler": scheduler,
            }

            if (pipeline_class == StableDiffusionXLImg2ImgPipeline) or (
                pipeline_class == StableDiffusionXLInpaintPipeline
            ):
                pipeline_kwargs.update({"requires_aesthetics_score": is_refiner})

            if is_refiner:
                pipeline_kwargs.update({"force_zeros_for_empty_prompt": False})

            pipe = pipeline_class(**pipeline_kwargs)
    else:
        text_config = create_ldm_bert_config(original_config)
        text_model = convert_ldm_bert_checkpoint(checkpoint, text_config)
        tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased", local_files_only=local_files_only)
        pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler)

    return pipe


def download_controlnet_from_original_ckpt(
    checkpoint_path: str,
    original_config_file: str,
    image_size: int = 512,
    extract_ema: bool = False,
    num_in_channels: Optional[int] = None,
    upcast_attention: Optional[bool] = None,
    device: str = None,
    from_safetensors: bool = False,
    use_linear_projection: Optional[bool] = None,
    cross_attention_dim: Optional[bool] = None,
) -> DiffusionPipeline:
    if from_safetensors:
        from safetensors import safe_open

        checkpoint = {}
        with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
            for key in f.keys():
                checkpoint[key] = f.get_tensor(key)
    else:
        if device is None:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            checkpoint = torch.load(checkpoint_path, map_location=device)
        else:
            checkpoint = torch.load(checkpoint_path, map_location=device)

    # NOTE: this while loop isn't great but this controlnet checkpoint has one additional
    # "state_dict" key https://huggingface.co./thibaud/controlnet-canny-sd21
    while "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]

    with open(original_config_file, "r") as f:
        original_config_file = f.read()
    original_config = yaml.safe_load(original_config_file)

    if num_in_channels is not None:
        original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels

    if "control_stage_config" not in original_config["model"]["params"]:
        raise ValueError("`control_stage_config` not present in original config")

    controlnet = convert_controlnet_checkpoint(
        checkpoint,
        original_config,
        checkpoint_path,
        image_size,
        upcast_attention,
        extract_ema,
        use_linear_projection=use_linear_projection,
        cross_attention_dim=cross_attention_dim,
    )

    return controlnet