File size: 29,651 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import importlib
import os
import re
import warnings
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

import torch
from huggingface_hub import model_info
from huggingface_hub.utils import validate_hf_hub_args
from packaging import version

from .. import __version__
from ..utils import (
    FLAX_WEIGHTS_NAME,
    ONNX_EXTERNAL_WEIGHTS_NAME,
    ONNX_WEIGHTS_NAME,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    get_class_from_dynamic_module,
    is_accelerate_available,
    is_peft_available,
    is_transformers_available,
    logging,
)
from ..utils.torch_utils import is_compiled_module


if is_transformers_available():
    import transformers
    from transformers import PreTrainedModel
    from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME
    from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME
    from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME

if is_accelerate_available():
    import accelerate
    from accelerate import dispatch_model
    from accelerate.hooks import remove_hook_from_module
    from accelerate.utils import compute_module_sizes, get_max_memory


INDEX_FILE = "diffusion_pytorch_model.bin"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "diffusers.utils"
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils"
CONNECTED_PIPES_KEYS = ["prior"]

logger = logging.get_logger(__name__)

LOADABLE_CLASSES = {
    "diffusers": {
        "ModelMixin": ["save_pretrained", "from_pretrained"],
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
        "OnnxRuntimeModel": ["save_pretrained", "from_pretrained"],
    },
    "transformers": {
        "PreTrainedTokenizer": ["save_pretrained", "from_pretrained"],
        "PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"],
        "PreTrainedModel": ["save_pretrained", "from_pretrained"],
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
    },
    "onnxruntime.training": {
        "ORTModule": ["save_pretrained", "from_pretrained"],
    },
}

ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])


def is_safetensors_compatible(filenames, variant=None, passed_components=None) -> bool:
    """
    Checking for safetensors compatibility:
    - By default, all models are saved with the default pytorch serialization, so we use the list of default pytorch
      files to know which safetensors files are needed.
    - The model is safetensors compatible only if there is a matching safetensors file for every default pytorch file.

    Converting default pytorch serialized filenames to safetensors serialized filenames:
    - For models from the diffusers library, just replace the ".bin" extension with ".safetensors"
    - For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin"
      extension is replaced with ".safetensors"
    """
    pt_filenames = []

    sf_filenames = set()

    passed_components = passed_components or []

    for filename in filenames:
        _, extension = os.path.splitext(filename)

        if len(filename.split("/")) == 2 and filename.split("/")[0] in passed_components:
            continue

        if extension == ".bin":
            pt_filenames.append(os.path.normpath(filename))
        elif extension == ".safetensors":
            sf_filenames.add(os.path.normpath(filename))

    for filename in pt_filenames:
        #  filename = 'foo/bar/baz.bam' -> path = 'foo/bar', filename = 'baz', extension = '.bam'
        path, filename = os.path.split(filename)
        filename, extension = os.path.splitext(filename)

        if filename.startswith("pytorch_model"):
            filename = filename.replace("pytorch_model", "model")
        else:
            filename = filename

        expected_sf_filename = os.path.normpath(os.path.join(path, filename))
        expected_sf_filename = f"{expected_sf_filename}.safetensors"
        if expected_sf_filename not in sf_filenames:
            logger.warning(f"{expected_sf_filename} not found")
            return False

    return True


def variant_compatible_siblings(filenames, variant=None) -> Union[List[os.PathLike], str]:
    weight_names = [
        WEIGHTS_NAME,
        SAFETENSORS_WEIGHTS_NAME,
        FLAX_WEIGHTS_NAME,
        ONNX_WEIGHTS_NAME,
        ONNX_EXTERNAL_WEIGHTS_NAME,
    ]

    if is_transformers_available():
        weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME]

    # model_pytorch, diffusion_model_pytorch, ...
    weight_prefixes = [w.split(".")[0] for w in weight_names]
    # .bin, .safetensors, ...
    weight_suffixs = [w.split(".")[-1] for w in weight_names]
    # -00001-of-00002
    transformers_index_format = r"\d{5}-of-\d{5}"

    if variant is not None:
        # `diffusion_pytorch_model.fp16.bin` as well as `model.fp16-00001-of-00002.safetensors`
        variant_file_re = re.compile(
            rf"({'|'.join(weight_prefixes)})\.({variant}|{variant}-{transformers_index_format})\.({'|'.join(weight_suffixs)})$"
        )
        # `text_encoder/pytorch_model.bin.index.fp16.json`
        variant_index_re = re.compile(
            rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.{variant}\.json$"
        )

    # `diffusion_pytorch_model.bin` as well as `model-00001-of-00002.safetensors`
    non_variant_file_re = re.compile(
        rf"({'|'.join(weight_prefixes)})(-{transformers_index_format})?\.({'|'.join(weight_suffixs)})$"
    )
    # `text_encoder/pytorch_model.bin.index.json`
    non_variant_index_re = re.compile(rf"({'|'.join(weight_prefixes)})\.({'|'.join(weight_suffixs)})\.index\.json")

    if variant is not None:
        variant_weights = {f for f in filenames if variant_file_re.match(f.split("/")[-1]) is not None}
        variant_indexes = {f for f in filenames if variant_index_re.match(f.split("/")[-1]) is not None}
        variant_filenames = variant_weights | variant_indexes
    else:
        variant_filenames = set()

    non_variant_weights = {f for f in filenames if non_variant_file_re.match(f.split("/")[-1]) is not None}
    non_variant_indexes = {f for f in filenames if non_variant_index_re.match(f.split("/")[-1]) is not None}
    non_variant_filenames = non_variant_weights | non_variant_indexes

    # all variant filenames will be used by default
    usable_filenames = set(variant_filenames)

    def convert_to_variant(filename):
        if "index" in filename:
            variant_filename = filename.replace("index", f"index.{variant}")
        elif re.compile(f"^(.*?){transformers_index_format}").match(filename) is not None:
            variant_filename = f"{filename.split('-')[0]}.{variant}-{'-'.join(filename.split('-')[1:])}"
        else:
            variant_filename = f"{filename.split('.')[0]}.{variant}.{filename.split('.')[1]}"
        return variant_filename

    for f in non_variant_filenames:
        variant_filename = convert_to_variant(f)
        if variant_filename not in usable_filenames:
            usable_filenames.add(f)

    return usable_filenames, variant_filenames


@validate_hf_hub_args
def warn_deprecated_model_variant(pretrained_model_name_or_path, token, variant, revision, model_filenames):
    info = model_info(
        pretrained_model_name_or_path,
        token=token,
        revision=None,
    )
    filenames = {sibling.rfilename for sibling in info.siblings}
    comp_model_filenames, _ = variant_compatible_siblings(filenames, variant=revision)
    comp_model_filenames = [".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames]

    if set(model_filenames).issubset(set(comp_model_filenames)):
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{revision}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
            FutureWarning,
        )
    else:
        warnings.warn(
            f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.",
            FutureWarning,
        )


def _unwrap_model(model):
    """Unwraps a model."""
    if is_compiled_module(model):
        model = model._orig_mod

    if is_peft_available():
        from peft import PeftModel

        if isinstance(model, PeftModel):
            model = model.base_model.model

    return model


def maybe_raise_or_warn(
    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
):
    """Simple helper method to raise or warn in case incorrect module has been passed"""
    if not is_pipeline_module:
        library = importlib.import_module(library_name)
        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

        expected_class_obj = None
        for class_name, class_candidate in class_candidates.items():
            if class_candidate is not None and issubclass(class_obj, class_candidate):
                expected_class_obj = class_candidate

        # Dynamo wraps the original model in a private class.
        # I didn't find a public API to get the original class.
        sub_model = passed_class_obj[name]
        unwrapped_sub_model = _unwrap_model(sub_model)
        model_cls = unwrapped_sub_model.__class__

        if not issubclass(model_cls, expected_class_obj):
            raise ValueError(
                f"{passed_class_obj[name]} is of type: {model_cls}, but should be" f" {expected_class_obj}"
            )
    else:
        logger.warning(
            f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
            " has the correct type"
        )


def get_class_obj_and_candidates(
    library_name, class_name, importable_classes, pipelines, is_pipeline_module, component_name=None, cache_dir=None
):
    """Simple helper method to retrieve class object of module as well as potential parent class objects"""
    component_folder = os.path.join(cache_dir, component_name)

    if is_pipeline_module:
        pipeline_module = getattr(pipelines, library_name)

        class_obj = getattr(pipeline_module, class_name)
        class_candidates = {c: class_obj for c in importable_classes.keys()}
    elif os.path.isfile(os.path.join(component_folder, library_name + ".py")):
        # load custom component
        class_obj = get_class_from_dynamic_module(
            component_folder, module_file=library_name + ".py", class_name=class_name
        )
        class_candidates = {c: class_obj for c in importable_classes.keys()}
    else:
        # else we just import it from the library.
        library = importlib.import_module(library_name)

        class_obj = getattr(library, class_name)
        class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

    return class_obj, class_candidates


def _get_custom_pipeline_class(
    custom_pipeline,
    repo_id=None,
    hub_revision=None,
    class_name=None,
    cache_dir=None,
    revision=None,
):
    if custom_pipeline.endswith(".py"):
        path = Path(custom_pipeline)
        # decompose into folder & file
        file_name = path.name
        custom_pipeline = path.parent.absolute()
    elif repo_id is not None:
        file_name = f"{custom_pipeline}.py"
        custom_pipeline = repo_id
    else:
        file_name = CUSTOM_PIPELINE_FILE_NAME

    if repo_id is not None and hub_revision is not None:
        # if we load the pipeline code from the Hub
        # make sure to overwrite the `revision`
        revision = hub_revision

    return get_class_from_dynamic_module(
        custom_pipeline,
        module_file=file_name,
        class_name=class_name,
        cache_dir=cache_dir,
        revision=revision,
    )


def _get_pipeline_class(
    class_obj,
    config=None,
    load_connected_pipeline=False,
    custom_pipeline=None,
    repo_id=None,
    hub_revision=None,
    class_name=None,
    cache_dir=None,
    revision=None,
):
    if custom_pipeline is not None:
        return _get_custom_pipeline_class(
            custom_pipeline,
            repo_id=repo_id,
            hub_revision=hub_revision,
            class_name=class_name,
            cache_dir=cache_dir,
            revision=revision,
        )

    if class_obj.__name__ != "DiffusionPipeline":
        return class_obj

    diffusers_module = importlib.import_module(class_obj.__module__.split(".")[0])
    class_name = class_name or config["_class_name"]
    if not class_name:
        raise ValueError(
            "The class name could not be found in the configuration file. Please make sure to pass the correct `class_name`."
        )

    class_name = class_name[4:] if class_name.startswith("Flax") else class_name

    pipeline_cls = getattr(diffusers_module, class_name)

    if load_connected_pipeline:
        from .auto_pipeline import _get_connected_pipeline

        connected_pipeline_cls = _get_connected_pipeline(pipeline_cls)
        if connected_pipeline_cls is not None:
            logger.info(
                f"Loading connected pipeline {connected_pipeline_cls.__name__} instead of {pipeline_cls.__name__} as specified via `load_connected_pipeline=True`"
            )
        else:
            logger.info(f"{pipeline_cls.__name__} has no connected pipeline class. Loading {pipeline_cls.__name__}.")

        pipeline_cls = connected_pipeline_cls or pipeline_cls

    return pipeline_cls


def _load_empty_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    name: str,
    torch_dtype: Union[str, torch.dtype],
    cached_folder: Union[str, os.PathLike],
    **kwargs,
):
    # retrieve class objects.
    class_obj, _ = get_class_obj_and_candidates(
        library_name,
        class_name,
        importable_classes,
        pipelines,
        is_pipeline_module,
        component_name=name,
        cache_dir=cached_folder,
    )

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    # Determine library.
    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)

    model = None
    config_path = cached_folder
    user_agent = {
        "diffusers": __version__,
        "file_type": "model",
        "framework": "pytorch",
    }

    if is_diffusers_model:
        # Load config and then the model on meta.
        config, unused_kwargs, commit_hash = class_obj.load_config(
            os.path.join(config_path, name),
            cache_dir=cached_folder,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=kwargs.pop("force_download", False),
            resume_download=kwargs.pop("resume_download", None),
            proxies=kwargs.pop("proxies", None),
            local_files_only=kwargs.pop("local_files_only", False),
            token=kwargs.pop("token", None),
            revision=kwargs.pop("revision", None),
            subfolder=kwargs.pop("subfolder", None),
            user_agent=user_agent,
        )
        with accelerate.init_empty_weights():
            model = class_obj.from_config(config, **unused_kwargs)
    elif is_transformers_model:
        config_class = getattr(class_obj, "config_class", None)
        if config_class is None:
            raise ValueError("`config_class` cannot be None. Please double-check the model.")

        config = config_class.from_pretrained(
            cached_folder,
            subfolder=name,
            force_download=kwargs.pop("force_download", False),
            resume_download=kwargs.pop("resume_download", None),
            proxies=kwargs.pop("proxies", None),
            local_files_only=kwargs.pop("local_files_only", False),
            token=kwargs.pop("token", None),
            revision=kwargs.pop("revision", None),
            user_agent=user_agent,
        )
        with accelerate.init_empty_weights():
            model = class_obj(config)

    if model is not None:
        model = model.to(dtype=torch_dtype)
    return model


def _assign_components_to_devices(
    module_sizes: Dict[str, float], device_memory: Dict[str, float], device_mapping_strategy: str = "balanced"
):
    device_ids = list(device_memory.keys())
    device_cycle = device_ids + device_ids[::-1]
    device_memory = device_memory.copy()

    device_id_component_mapping = {}
    current_device_index = 0
    for component in module_sizes:
        device_id = device_cycle[current_device_index % len(device_cycle)]
        component_memory = module_sizes[component]
        curr_device_memory = device_memory[device_id]

        # If the GPU doesn't fit the current component offload to the CPU.
        if component_memory > curr_device_memory:
            device_id_component_mapping["cpu"] = [component]
        else:
            if device_id not in device_id_component_mapping:
                device_id_component_mapping[device_id] = [component]
            else:
                device_id_component_mapping[device_id].append(component)

            # Update the device memory.
            device_memory[device_id] -= component_memory
            current_device_index += 1

    return device_id_component_mapping


def _get_final_device_map(device_map, pipeline_class, passed_class_obj, init_dict, library, max_memory, **kwargs):
    # To avoid circular import problem.
    from diffusers import pipelines

    torch_dtype = kwargs.get("torch_dtype", torch.float32)

    # Load each module in the pipeline on a meta device so that we can derive the device map.
    init_empty_modules = {}
    for name, (library_name, class_name) in init_dict.items():
        if class_name.startswith("Flax"):
            raise ValueError("Flax pipelines are not supported with `device_map`.")

        # Define all importable classes
        is_pipeline_module = hasattr(pipelines, library_name)
        importable_classes = ALL_IMPORTABLE_CLASSES
        loaded_sub_model = None

        # Use passed sub model or load class_name from library_name
        if name in passed_class_obj:
            # if the model is in a pipeline module, then we load it from the pipeline
            # check that passed_class_obj has correct parent class
            maybe_raise_or_warn(
                library_name,
                library,
                class_name,
                importable_classes,
                passed_class_obj,
                name,
                is_pipeline_module,
            )
            with accelerate.init_empty_weights():
                loaded_sub_model = passed_class_obj[name]

        else:
            loaded_sub_model = _load_empty_model(
                library_name=library_name,
                class_name=class_name,
                importable_classes=importable_classes,
                pipelines=pipelines,
                is_pipeline_module=is_pipeline_module,
                pipeline_class=pipeline_class,
                name=name,
                torch_dtype=torch_dtype,
                cached_folder=kwargs.get("cached_folder", None),
                force_download=kwargs.get("force_download", None),
                resume_download=kwargs.get("resume_download", None),
                proxies=kwargs.get("proxies", None),
                local_files_only=kwargs.get("local_files_only", None),
                token=kwargs.get("token", None),
                revision=kwargs.get("revision", None),
            )

        if loaded_sub_model is not None:
            init_empty_modules[name] = loaded_sub_model

    # determine device map
    # Obtain a sorted dictionary for mapping the model-level components
    # to their sizes.
    module_sizes = {
        module_name: compute_module_sizes(module, dtype=torch_dtype)[""]
        for module_name, module in init_empty_modules.items()
        if isinstance(module, torch.nn.Module)
    }
    module_sizes = dict(sorted(module_sizes.items(), key=lambda item: item[1], reverse=True))

    # Obtain maximum memory available per device (GPUs only).
    max_memory = get_max_memory(max_memory)
    max_memory = dict(sorted(max_memory.items(), key=lambda item: item[1], reverse=True))
    max_memory = {k: v for k, v in max_memory.items() if k != "cpu"}

    # Obtain a dictionary mapping the model-level components to the available
    # devices based on the maximum memory and the model sizes.
    final_device_map = None
    if len(max_memory) > 0:
        device_id_component_mapping = _assign_components_to_devices(
            module_sizes, max_memory, device_mapping_strategy=device_map
        )

        # Obtain the final device map, e.g., `{"unet": 0, "text_encoder": 1, "vae": 1, ...}`
        final_device_map = {}
        for device_id, components in device_id_component_mapping.items():
            for component in components:
                final_device_map[component] = device_id

    return final_device_map


def load_sub_model(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    pipeline_class: Any,
    torch_dtype: torch.dtype,
    provider: Any,
    sess_options: Any,
    device_map: Optional[Union[Dict[str, torch.device], str]],
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
    offload_folder: Optional[Union[str, os.PathLike]],
    offload_state_dict: bool,
    model_variants: Dict[str, str],
    name: str,
    from_flax: bool,
    variant: str,
    low_cpu_mem_usage: bool,
    cached_folder: Union[str, os.PathLike],
):
    """Helper method to load the module `name` from `library_name` and `class_name`"""
    # retrieve class candidates
    class_obj, class_candidates = get_class_obj_and_candidates(
        library_name,
        class_name,
        importable_classes,
        pipelines,
        is_pipeline_module,
        component_name=name,
        cache_dir=cached_folder,
    )

    load_method_name = None
    # retrieve load method name
    for class_name, class_candidate in class_candidates.items():
        if class_candidate is not None and issubclass(class_obj, class_candidate):
            load_method_name = importable_classes[class_name][1]

    # if load method name is None, then we have a dummy module -> raise Error
    if load_method_name is None:
        none_module = class_obj.__module__
        is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
            TRANSFORMERS_DUMMY_MODULES_FOLDER
        )
        if is_dummy_path and "dummy" in none_module:
            # call class_obj for nice error message of missing requirements
            class_obj()

        raise ValueError(
            f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
            f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
        )

    load_method = getattr(class_obj, load_method_name)

    # add kwargs to loading method
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    loading_kwargs = {}
    if issubclass(class_obj, torch.nn.Module):
        loading_kwargs["torch_dtype"] = torch_dtype
    if issubclass(class_obj, diffusers_module.OnnxRuntimeModel):
        loading_kwargs["provider"] = provider
        loading_kwargs["sess_options"] = sess_options

    is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )

    # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
    # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
    # This makes sure that the weights won't be initialized which significantly speeds up loading.
    if is_diffusers_model or is_transformers_model:
        loading_kwargs["device_map"] = device_map
        loading_kwargs["max_memory"] = max_memory
        loading_kwargs["offload_folder"] = offload_folder
        loading_kwargs["offload_state_dict"] = offload_state_dict
        loading_kwargs["variant"] = model_variants.pop(name, None)

        if from_flax:
            loading_kwargs["from_flax"] = True

        # the following can be deleted once the minimum required `transformers` version
        # is higher than 4.27
        if (
            is_transformers_model
            and loading_kwargs["variant"] is not None
            and transformers_version < version.parse("4.27.0")
        ):
            raise ImportError(
                f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
            )
        elif is_transformers_model and loading_kwargs["variant"] is None:
            loading_kwargs.pop("variant")

        # if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
        if not (from_flax and is_transformers_model):
            loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
        else:
            loading_kwargs["low_cpu_mem_usage"] = False

    # check if the module is in a subdirectory
    if os.path.isdir(os.path.join(cached_folder, name)):
        loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
    else:
        # else load from the root directory
        loaded_sub_model = load_method(cached_folder, **loading_kwargs)

    if isinstance(loaded_sub_model, torch.nn.Module) and isinstance(device_map, dict):
        # remove hooks
        remove_hook_from_module(loaded_sub_model, recurse=True)
        needs_offloading_to_cpu = device_map[""] == "cpu"

        if needs_offloading_to_cpu:
            dispatch_model(
                loaded_sub_model,
                state_dict=loaded_sub_model.state_dict(),
                device_map=device_map,
                force_hooks=True,
                main_device=0,
            )
        else:
            dispatch_model(loaded_sub_model, device_map=device_map, force_hooks=True)

    return loaded_sub_model


def _fetch_class_library_tuple(module):
    # import it here to avoid circular import
    diffusers_module = importlib.import_module(__name__.split(".")[0])
    pipelines = getattr(diffusers_module, "pipelines")

    # register the config from the original module, not the dynamo compiled one
    not_compiled_module = _unwrap_model(module)
    library = not_compiled_module.__module__.split(".")[0]

    # check if the module is a pipeline module
    module_path_items = not_compiled_module.__module__.split(".")
    pipeline_dir = module_path_items[-2] if len(module_path_items) > 2 else None

    path = not_compiled_module.__module__.split(".")
    is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)

    # if library is not in LOADABLE_CLASSES, then it is a custom module.
    # Or if it's a pipeline module, then the module is inside the pipeline
    # folder so we set the library to module name.
    if is_pipeline_module:
        library = pipeline_dir
    elif library not in LOADABLE_CLASSES:
        library = not_compiled_module.__module__

    # retrieve class_name
    class_name = not_compiled_module.__class__.__name__

    return (library, class_name)