File size: 25,433 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
from typing import Callable, Dict, List, Optional, Union

import PIL.Image
import torch
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection

from ...models import PriorTransformer
from ...schedulers import UnCLIPScheduler
from ...utils import (
    logging,
    replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..kandinsky import KandinskyPriorPipelineOutput
from ..pipeline_utils import DiffusionPipeline


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline
        >>> import torch

        >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")
        >>> pipe_prior.to("cuda")
        >>> prompt = "red cat, 4k photo"
        >>> image_emb, negative_image_emb = pipe_prior(prompt).to_tuple()

        >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")
        >>> pipe.to("cuda")
        >>> image = pipe(
        ...     image_embeds=image_emb,
        ...     negative_image_embeds=negative_image_emb,
        ...     height=768,
        ...     width=768,
        ...     num_inference_steps=50,
        ... ).images
        >>> image[0].save("cat.png")
        ```
"""

EXAMPLE_INTERPOLATE_DOC_STRING = """
    Examples:
        ```py
        >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline
        >>> from diffusers.utils import load_image
        >>> import PIL
        >>> import torch
        >>> from torchvision import transforms

        >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
        ...     "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
        ... )
        >>> pipe_prior.to("cuda")
        >>> img1 = load_image(
        ...     "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main"
        ...     "/kandinsky/cat.png"
        ... )
        >>> img2 = load_image(
        ...     "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main"
        ...     "/kandinsky/starry_night.jpeg"
        ... )
        >>> images_texts = ["a cat", img1, img2]
        >>> weights = [0.3, 0.3, 0.4]
        >>> out = pipe_prior.interpolate(images_texts, weights)
        >>> pipe = KandinskyV22Pipeline.from_pretrained(
        ...     "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
        ... )
        >>> pipe.to("cuda")
        >>> image = pipe(
        ...     image_embeds=out.image_embeds,
        ...     negative_image_embeds=out.negative_image_embeds,
        ...     height=768,
        ...     width=768,
        ...     num_inference_steps=50,
        ... ).images[0]
        >>> image.save("starry_cat.png")
        ```
"""


class KandinskyV22PriorPipeline(DiffusionPipeline):
    """
    Pipeline for generating image prior for Kandinsky

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        prior ([`PriorTransformer`]):
            The canonical unCLIP prior to approximate the image embedding from the text embedding.
        image_encoder ([`CLIPVisionModelWithProjection`]):
            Frozen image-encoder.
        text_encoder ([`CLIPTextModelWithProjection`]):
            Frozen text-encoder.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co./docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        scheduler ([`UnCLIPScheduler`]):
            A scheduler to be used in combination with `prior` to generate image embedding.
        image_processor ([`CLIPImageProcessor`]):
            A image_processor to be used to preprocess image from clip.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->prior"
    _exclude_from_cpu_offload = ["prior"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "text_encoder_hidden_states", "text_mask"]

    def __init__(
        self,
        prior: PriorTransformer,
        image_encoder: CLIPVisionModelWithProjection,
        text_encoder: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        scheduler: UnCLIPScheduler,
        image_processor: CLIPImageProcessor,
    ):
        super().__init__()

        self.register_modules(
            prior=prior,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            scheduler=scheduler,
            image_encoder=image_encoder,
            image_processor=image_processor,
        )

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
    def interpolate(
        self,
        images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]],
        weights: List[float],
        num_images_per_prompt: int = 1,
        num_inference_steps: int = 25,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        negative_prior_prompt: Optional[str] = None,
        negative_prompt: str = "",
        guidance_scale: float = 4.0,
        device=None,
    ):
        """
        Function invoked when using the prior pipeline for interpolation.

        Args:
            images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`):
                list of prompts and images to guide the image generation.
            weights: (`List[float]`):
                list of weights for each condition in `images_and_prompts`
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            negative_prior_prompt (`str`, *optional*):
                The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
                `guidance_scale` is less than `1`).
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if
                `guidance_scale` is less than `1`).
            guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.

        Examples:

        Returns:
            [`KandinskyPriorPipelineOutput`] or `tuple`
        """

        device = device or self.device

        if len(images_and_prompts) != len(weights):
            raise ValueError(
                f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length"
            )

        image_embeddings = []
        for cond, weight in zip(images_and_prompts, weights):
            if isinstance(cond, str):
                image_emb = self(
                    cond,
                    num_inference_steps=num_inference_steps,
                    num_images_per_prompt=num_images_per_prompt,
                    generator=generator,
                    latents=latents,
                    negative_prompt=negative_prior_prompt,
                    guidance_scale=guidance_scale,
                ).image_embeds.unsqueeze(0)

            elif isinstance(cond, (PIL.Image.Image, torch.Tensor)):
                if isinstance(cond, PIL.Image.Image):
                    cond = (
                        self.image_processor(cond, return_tensors="pt")
                        .pixel_values[0]
                        .unsqueeze(0)
                        .to(dtype=self.image_encoder.dtype, device=device)
                    )

                image_emb = self.image_encoder(cond)["image_embeds"].repeat(num_images_per_prompt, 1).unsqueeze(0)

            else:
                raise ValueError(
                    f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor`  but is {type(cond)}"
                )

            image_embeddings.append(image_emb * weight)

        image_emb = torch.cat(image_embeddings).sum(dim=0)

        out_zero = self(
            negative_prompt,
            num_inference_steps=num_inference_steps,
            num_images_per_prompt=num_images_per_prompt,
            generator=generator,
            latents=latents,
            negative_prompt=negative_prior_prompt,
            guidance_scale=guidance_scale,
        )
        zero_image_emb = out_zero.negative_image_embeds if negative_prompt == "" else out_zero.image_embeds

        return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb)

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline.get_zero_embed
    def get_zero_embed(self, batch_size=1, device=None):
        device = device or self.device
        zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to(
            device=device, dtype=self.image_encoder.dtype
        )
        zero_image_emb = self.image_encoder(zero_img)["image_embeds"]
        zero_image_emb = zero_image_emb.repeat(batch_size, 1)
        return zero_image_emb

    # Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
    ):
        batch_size = len(prompt) if isinstance(prompt, list) else 1
        # get prompt text embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        text_mask = text_inputs.attention_mask.bool().to(device)

        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
            text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]

        text_encoder_output = self.text_encoder(text_input_ids.to(device))

        prompt_embeds = text_encoder_output.text_embeds
        text_encoder_hidden_states = text_encoder_output.last_hidden_state

        prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
        text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
        text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)

        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            uncond_text_mask = uncond_input.attention_mask.bool().to(device)
            negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))

            negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
            uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method

            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)

            seq_len = uncond_text_encoder_hidden_states.shape[1]
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
            uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)

            # done duplicates

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])

            text_mask = torch.cat([uncond_text_mask, text_mask])

        return prompt_embeds, text_encoder_hidden_states, text_mask

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: int = 1,
        num_inference_steps: int = 25,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        guidance_scale: float = 4.0,
        output_type: Optional[str] = "pt",  # pt only
        return_dict: bool = True,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    ):
        """
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            num_inference_steps (`int`, *optional*, defaults to 100):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            output_type (`str`, *optional*, defaults to `"pt"`):
                The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"`
                (`torch.Tensor`).
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`KandinskyPriorPipelineOutput`] or `tuple`
        """

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if isinstance(prompt, str):
            prompt = [prompt]
        elif not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if isinstance(negative_prompt, str):
            negative_prompt = [negative_prompt]
        elif not isinstance(negative_prompt, list) and negative_prompt is not None:
            raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")

        # if the negative prompt is defined we double the batch size to
        # directly retrieve the negative prompt embedding
        if negative_prompt is not None:
            prompt = prompt + negative_prompt
            negative_prompt = 2 * negative_prompt

        device = self._execution_device

        batch_size = len(prompt)
        batch_size = batch_size * num_images_per_prompt

        self._guidance_scale = guidance_scale

        prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
            prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt
        )

        # prior
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        embedding_dim = self.prior.config.embedding_dim

        latents = self.prepare_latents(
            (batch_size, embedding_dim),
            prompt_embeds.dtype,
            device,
            generator,
            latents,
            self.scheduler,
        )
        self._num_timesteps = len(timesteps)
        for i, t in enumerate(self.progress_bar(timesteps)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

            predicted_image_embedding = self.prior(
                latent_model_input,
                timestep=t,
                proj_embedding=prompt_embeds,
                encoder_hidden_states=text_encoder_hidden_states,
                attention_mask=text_mask,
            ).predicted_image_embedding

            if self.do_classifier_free_guidance:
                predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
                predicted_image_embedding = predicted_image_embedding_uncond + self.guidance_scale * (
                    predicted_image_embedding_text - predicted_image_embedding_uncond
                )

            if i + 1 == timesteps.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = timesteps[i + 1]

            latents = self.scheduler.step(
                predicted_image_embedding,
                timestep=t,
                sample=latents,
                generator=generator,
                prev_timestep=prev_timestep,
            ).prev_sample

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                text_encoder_hidden_states = callback_outputs.pop(
                    "text_encoder_hidden_states", text_encoder_hidden_states
                )
                text_mask = callback_outputs.pop("text_mask", text_mask)

        latents = self.prior.post_process_latents(latents)

        image_embeddings = latents

        # if negative prompt has been defined, we retrieve split the image embedding into two
        if negative_prompt is None:
            zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
        else:
            image_embeddings, zero_embeds = image_embeddings.chunk(2)

        self.maybe_free_model_hooks()

        if output_type not in ["pt", "np"]:
            raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}")

        if output_type == "np":
            image_embeddings = image_embeddings.cpu().numpy()
            zero_embeds = zero_embeds.cpu().numpy()

        if not return_dict:
            return (image_embeddings, zero_embeds)

        return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds)