File size: 16,703 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from ..utils import deprecate
from .normalization import RMSNorm


class Upsample1D(nn.Module):
    """A 1D upsampling layer with an optional convolution.

    Parameters:
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        use_conv_transpose (`bool`, default `False`):
            option to use a convolution transpose.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
        name (`str`, default `conv`):
            name of the upsampling 1D layer.
    """

    def __init__(
        self,
        channels: int,
        use_conv: bool = False,
        use_conv_transpose: bool = False,
        out_channels: Optional[int] = None,
        name: str = "conv",
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
        self.name = name

        self.conv = None
        if use_conv_transpose:
            self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
        elif use_conv:
            self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        assert inputs.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(inputs)

        outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")

        if self.use_conv:
            outputs = self.conv(outputs)

        return outputs


class Upsample2D(nn.Module):
    """A 2D upsampling layer with an optional convolution.

    Parameters:
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        use_conv_transpose (`bool`, default `False`):
            option to use a convolution transpose.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
        name (`str`, default `conv`):
            name of the upsampling 2D layer.
    """

    def __init__(
        self,
        channels: int,
        use_conv: bool = False,
        use_conv_transpose: bool = False,
        out_channels: Optional[int] = None,
        name: str = "conv",
        kernel_size: Optional[int] = None,
        padding=1,
        norm_type=None,
        eps=None,
        elementwise_affine=None,
        bias=True,
        interpolate=True,
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
        self.name = name
        self.interpolate = interpolate

        if norm_type == "ln_norm":
            self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
        elif norm_type == "rms_norm":
            self.norm = RMSNorm(channels, eps, elementwise_affine)
        elif norm_type is None:
            self.norm = None
        else:
            raise ValueError(f"unknown norm_type: {norm_type}")

        conv = None
        if use_conv_transpose:
            if kernel_size is None:
                kernel_size = 4
            conv = nn.ConvTranspose2d(
                channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias
            )
        elif use_conv:
            if kernel_size is None:
                kernel_size = 3
            conv = nn.Conv2d(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias)

        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv

    def forward(
        self, hidden_states: torch.FloatTensor, output_size: Optional[int] = None, *args, **kwargs
    ) -> torch.FloatTensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        assert hidden_states.shape[1] == self.channels

        if self.norm is not None:
            hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)

        if self.use_conv_transpose:
            return self.conv(hidden_states)

        # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
        # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
        # https://github.com/pytorch/pytorch/issues/86679
        dtype = hidden_states.dtype
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(torch.float32)

        # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
        if hidden_states.shape[0] >= 64:
            hidden_states = hidden_states.contiguous()

        # if `output_size` is passed we force the interpolation output
        # size and do not make use of `scale_factor=2`
        if self.interpolate:
            if output_size is None:
                hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
            else:
                hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")

        # If the input is bfloat16, we cast back to bfloat16
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(dtype)

        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
        if self.use_conv:
            if self.name == "conv":
                hidden_states = self.conv(hidden_states)
            else:
                hidden_states = self.Conv2d_0(hidden_states)

        return hidden_states


class FirUpsample2D(nn.Module):
    """A 2D FIR upsampling layer with an optional convolution.

    Parameters:
        channels (`int`, optional):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
        fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
            kernel for the FIR filter.
    """

    def __init__(
        self,
        channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        use_conv: bool = False,
        fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1),
    ):
        super().__init__()
        out_channels = out_channels if out_channels else channels
        if use_conv:
            self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.use_conv = use_conv
        self.fir_kernel = fir_kernel
        self.out_channels = out_channels

    def _upsample_2d(
        self,
        hidden_states: torch.FloatTensor,
        weight: Optional[torch.FloatTensor] = None,
        kernel: Optional[torch.FloatTensor] = None,
        factor: int = 2,
        gain: float = 1,
    ) -> torch.FloatTensor:
        """Fused `upsample_2d()` followed by `Conv2d()`.

        Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
        efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
        arbitrary order.

        Args:
            hidden_states (`torch.FloatTensor`):
                Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
            weight (`torch.FloatTensor`, *optional*):
                Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
                performed by `inChannels = x.shape[0] // numGroups`.
            kernel (`torch.FloatTensor`, *optional*):
                FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
                corresponds to nearest-neighbor upsampling.
            factor (`int`, *optional*): Integer upsampling factor (default: 2).
            gain (`float`, *optional*): Scaling factor for signal magnitude (default: 1.0).

        Returns:
            output (`torch.FloatTensor`):
                Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
                datatype as `hidden_states`.
        """

        assert isinstance(factor, int) and factor >= 1

        # Setup filter kernel.
        if kernel is None:
            kernel = [1] * factor

        # setup kernel
        kernel = torch.tensor(kernel, dtype=torch.float32)
        if kernel.ndim == 1:
            kernel = torch.outer(kernel, kernel)
        kernel /= torch.sum(kernel)

        kernel = kernel * (gain * (factor**2))

        if self.use_conv:
            convH = weight.shape[2]
            convW = weight.shape[3]
            inC = weight.shape[1]

            pad_value = (kernel.shape[0] - factor) - (convW - 1)

            stride = (factor, factor)
            # Determine data dimensions.
            output_shape = (
                (hidden_states.shape[2] - 1) * factor + convH,
                (hidden_states.shape[3] - 1) * factor + convW,
            )
            output_padding = (
                output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
                output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
            )
            assert output_padding[0] >= 0 and output_padding[1] >= 0
            num_groups = hidden_states.shape[1] // inC

            # Transpose weights.
            weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
            weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
            weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))

            inverse_conv = F.conv_transpose2d(
                hidden_states,
                weight,
                stride=stride,
                output_padding=output_padding,
                padding=0,
            )

            output = upfirdn2d_native(
                inverse_conv,
                torch.tensor(kernel, device=inverse_conv.device),
                pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
            )
        else:
            pad_value = kernel.shape[0] - factor
            output = upfirdn2d_native(
                hidden_states,
                torch.tensor(kernel, device=hidden_states.device),
                up=factor,
                pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
            )

        return output

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        if self.use_conv:
            height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
            height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
        else:
            height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)

        return height


class KUpsample2D(nn.Module):
    r"""A 2D K-upsampling layer.

    Parameters:
        pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use.
    """

    def __init__(self, pad_mode: str = "reflect"):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2
        self.pad = kernel_1d.shape[1] // 2 - 1
        self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        inputs = F.pad(inputs, ((self.pad + 1) // 2,) * 4, self.pad_mode)
        weight = inputs.new_zeros(
            [
                inputs.shape[1],
                inputs.shape[1],
                self.kernel.shape[0],
                self.kernel.shape[1],
            ]
        )
        indices = torch.arange(inputs.shape[1], device=inputs.device)
        kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
        weight[indices, indices] = kernel
        return F.conv_transpose2d(inputs, weight, stride=2, padding=self.pad * 2 + 1)


def upfirdn2d_native(
    tensor: torch.Tensor,
    kernel: torch.Tensor,
    up: int = 1,
    down: int = 1,
    pad: Tuple[int, int] = (0, 0),
) -> torch.Tensor:
    up_x = up_y = up
    down_x = down_y = down
    pad_x0 = pad_y0 = pad[0]
    pad_x1 = pad_y1 = pad[1]

    _, channel, in_h, in_w = tensor.shape
    tensor = tensor.reshape(-1, in_h, in_w, 1)

    _, in_h, in_w, minor = tensor.shape
    kernel_h, kernel_w = kernel.shape

    out = tensor.view(-1, in_h, 1, in_w, 1, minor)
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
    out = out.to(tensor.device)  # Move back to mps if necessary
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)


def upsample_2d(
    hidden_states: torch.FloatTensor,
    kernel: Optional[torch.FloatTensor] = None,
    factor: int = 2,
    gain: float = 1,
) -> torch.FloatTensor:
    r"""Upsample2D a batch of 2D images with the given filter.
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
    a: multiple of the upsampling factor.

    Args:
        hidden_states (`torch.FloatTensor`):
            Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
        kernel (`torch.FloatTensor`, *optional*):
            FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
            corresponds to nearest-neighbor upsampling.
        factor (`int`, *optional*, default to `2`):
            Integer upsampling factor.
        gain (`float`, *optional*, default to `1.0`):
            Scaling factor for signal magnitude (default: 1.0).

    Returns:
        output (`torch.FloatTensor`):
            Tensor of the shape `[N, C, H * factor, W * factor]`
    """
    assert isinstance(factor, int) and factor >= 1
    if kernel is None:
        kernel = [1] * factor

    kernel = torch.tensor(kernel, dtype=torch.float32)
    if kernel.ndim == 1:
        kernel = torch.outer(kernel, kernel)
    kernel /= torch.sum(kernel)

    kernel = kernel * (gain * (factor**2))
    pad_value = kernel.shape[0] - factor
    output = upfirdn2d_native(
        hidden_states,
        kernel.to(device=hidden_states.device),
        up=factor,
        pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
    )
    return output