Spaces:
Running
on
Zero
Running
on
Zero
File size: 85,441 Bytes
62c110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from math import gcd
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import FloatTensor, nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, is_torch_version, logging
from ..utils.torch_utils import apply_freeu
from .attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
Attention,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from .controlnet import ControlNetConditioningEmbedding
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unets.unet_2d_blocks import (
CrossAttnDownBlock2D,
CrossAttnUpBlock2D,
Downsample2D,
ResnetBlock2D,
Transformer2DModel,
UNetMidBlock2DCrossAttn,
Upsample2D,
)
from .unets.unet_2d_condition import UNet2DConditionModel
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class ControlNetXSOutput(BaseOutput):
"""
The output of [`UNetControlNetXSModel`].
Args:
sample (`FloatTensor` of shape `(batch_size, num_channels, height, width)`):
The output of the `UNetControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base
model output, but is already the final output.
"""
sample: FloatTensor = None
class DownBlockControlNetXSAdapter(nn.Module):
"""Components that together with corresponding components from the base model will form a
`ControlNetXSCrossAttnDownBlock2D`"""
def __init__(
self,
resnets: nn.ModuleList,
base_to_ctrl: nn.ModuleList,
ctrl_to_base: nn.ModuleList,
attentions: Optional[nn.ModuleList] = None,
downsampler: Optional[nn.Conv2d] = None,
):
super().__init__()
self.resnets = resnets
self.base_to_ctrl = base_to_ctrl
self.ctrl_to_base = ctrl_to_base
self.attentions = attentions
self.downsamplers = downsampler
class MidBlockControlNetXSAdapter(nn.Module):
"""Components that together with corresponding components from the base model will form a
`ControlNetXSCrossAttnMidBlock2D`"""
def __init__(self, midblock: UNetMidBlock2DCrossAttn, base_to_ctrl: nn.ModuleList, ctrl_to_base: nn.ModuleList):
super().__init__()
self.midblock = midblock
self.base_to_ctrl = base_to_ctrl
self.ctrl_to_base = ctrl_to_base
class UpBlockControlNetXSAdapter(nn.Module):
"""Components that together with corresponding components from the base model will form a `ControlNetXSCrossAttnUpBlock2D`"""
def __init__(self, ctrl_to_base: nn.ModuleList):
super().__init__()
self.ctrl_to_base = ctrl_to_base
def get_down_block_adapter(
base_in_channels: int,
base_out_channels: int,
ctrl_in_channels: int,
ctrl_out_channels: int,
temb_channels: int,
max_norm_num_groups: Optional[int] = 32,
has_crossattn=True,
transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
num_attention_heads: Optional[int] = 1,
cross_attention_dim: Optional[int] = 1024,
add_downsample: bool = True,
upcast_attention: Optional[bool] = False,
):
num_layers = 2 # only support sd + sdxl
resnets = []
attentions = []
ctrl_to_base = []
base_to_ctrl = []
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
base_in_channels = base_in_channels if i == 0 else base_out_channels
ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
# Before the resnet/attention application, information is concatted from base to control.
# Concat doesn't require change in number of channels
base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
resnets.append(
ResnetBlock2D(
in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
out_channels=ctrl_out_channels,
temb_channels=temb_channels,
groups=find_largest_factor(ctrl_in_channels + base_in_channels, max_factor=max_norm_num_groups),
groups_out=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
eps=1e-5,
)
)
if has_crossattn:
attentions.append(
Transformer2DModel(
num_attention_heads,
ctrl_out_channels // num_attention_heads,
in_channels=ctrl_out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
use_linear_projection=True,
upcast_attention=upcast_attention,
norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
)
)
# After the resnet/attention application, information is added from control to base
# Addition requires change in number of channels
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
if add_downsample:
# Before the downsampler application, information is concatted from base to control
# Concat doesn't require change in number of channels
base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
downsamplers = Downsample2D(
ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
)
# After the downsampler application, information is added from control to base
# Addition requires change in number of channels
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
else:
downsamplers = None
down_block_components = DownBlockControlNetXSAdapter(
resnets=nn.ModuleList(resnets),
base_to_ctrl=nn.ModuleList(base_to_ctrl),
ctrl_to_base=nn.ModuleList(ctrl_to_base),
)
if has_crossattn:
down_block_components.attentions = nn.ModuleList(attentions)
if downsamplers is not None:
down_block_components.downsamplers = downsamplers
return down_block_components
def get_mid_block_adapter(
base_channels: int,
ctrl_channels: int,
temb_channels: Optional[int] = None,
max_norm_num_groups: Optional[int] = 32,
transformer_layers_per_block: int = 1,
num_attention_heads: Optional[int] = 1,
cross_attention_dim: Optional[int] = 1024,
upcast_attention: bool = False,
):
# Before the midblock application, information is concatted from base to control.
# Concat doesn't require change in number of channels
base_to_ctrl = make_zero_conv(base_channels, base_channels)
midblock = UNetMidBlock2DCrossAttn(
transformer_layers_per_block=transformer_layers_per_block,
in_channels=ctrl_channels + base_channels,
out_channels=ctrl_channels,
temb_channels=temb_channels,
# number or norm groups must divide both in_channels and out_channels
resnet_groups=find_largest_factor(gcd(ctrl_channels, ctrl_channels + base_channels), max_norm_num_groups),
cross_attention_dim=cross_attention_dim,
num_attention_heads=num_attention_heads,
use_linear_projection=True,
upcast_attention=upcast_attention,
)
# After the midblock application, information is added from control to base
# Addition requires change in number of channels
ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
return MidBlockControlNetXSAdapter(base_to_ctrl=base_to_ctrl, midblock=midblock, ctrl_to_base=ctrl_to_base)
def get_up_block_adapter(
out_channels: int,
prev_output_channel: int,
ctrl_skip_channels: List[int],
):
ctrl_to_base = []
num_layers = 3 # only support sd + sdxl
for i in range(num_layers):
resnet_in_channels = prev_output_channel if i == 0 else out_channels
ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
return UpBlockControlNetXSAdapter(ctrl_to_base=nn.ModuleList(ctrl_to_base))
class ControlNetXSAdapter(ModelMixin, ConfigMixin):
r"""
A `ControlNetXSAdapter` model. To use it, pass it into a `UNetControlNetXSModel` (together with a
`UNet2DConditionModel` base model).
This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
methods implemented for all models (such as downloading or saving).
Like `UNetControlNetXSModel`, `ControlNetXSAdapter` is compatible with StableDiffusion and StableDiffusion-XL. It's
default parameters are compatible with StableDiffusion.
Parameters:
conditioning_channels (`int`, defaults to 3):
Number of channels of conditioning input (e.g. an image)
conditioning_channel_order (`str`, defaults to `"rgb"`):
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
The tuple of output channels for each block in the `controlnet_cond_embedding` layer.
time_embedding_mix (`float`, defaults to 1.0):
If 0, then only the control adapters's time embedding is used. If 1, then only the base unet's time
embedding is used. Otherwise, both are combined.
learn_time_embedding (`bool`, defaults to `False`):
Whether a time embedding should be learned. If yes, `UNetControlNetXSModel` will combine the time
embeddings of the base model and the control adapter. If no, `UNetControlNetXSModel` will use the base
model's time embedding.
num_attention_heads (`list[int]`, defaults to `[4]`):
The number of attention heads.
block_out_channels (`list[int]`, defaults to `[4, 8, 16, 16]`):
The tuple of output channels for each block.
base_block_out_channels (`list[int]`, defaults to `[320, 640, 1280, 1280]`):
The tuple of output channels for each block in the base unet.
cross_attention_dim (`int`, defaults to 1024):
The dimension of the cross attention features.
down_block_types (`list[str]`, defaults to `["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]`):
The tuple of downsample blocks to use.
sample_size (`int`, defaults to 96):
Height and width of input/output sample.
transformer_layers_per_block (`Union[int, Tuple[int]]`, defaults to 1):
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
upcast_attention (`bool`, defaults to `True`):
Whether the attention computation should always be upcasted.
max_norm_num_groups (`int`, defaults to 32):
Maximum number of groups in group normal. The actual number will the the largest divisor of the respective
channels, that is <= max_norm_num_groups.
"""
@register_to_config
def __init__(
self,
conditioning_channels: int = 3,
conditioning_channel_order: str = "rgb",
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
time_embedding_mix: float = 1.0,
learn_time_embedding: bool = False,
num_attention_heads: Union[int, Tuple[int]] = 4,
block_out_channels: Tuple[int] = (4, 8, 16, 16),
base_block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
cross_attention_dim: int = 1024,
down_block_types: Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
),
sample_size: Optional[int] = 96,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
upcast_attention: bool = True,
max_norm_num_groups: int = 32,
):
super().__init__()
time_embedding_input_dim = base_block_out_channels[0]
time_embedding_dim = base_block_out_channels[0] * 4
# Check inputs
if conditioning_channel_order not in ["rgb", "bgr"]:
raise ValueError(f"unknown `conditioning_channel_order`: {conditioning_channel_order}")
if len(block_out_channels) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
)
if not isinstance(transformer_layers_per_block, (list, tuple)):
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
if not isinstance(cross_attention_dim, (list, tuple)):
cross_attention_dim = [cross_attention_dim] * len(down_block_types)
# see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why `ControlNetXSAdapter` takes `num_attention_heads` instead of `attention_head_dim`
if not isinstance(num_attention_heads, (list, tuple)):
num_attention_heads = [num_attention_heads] * len(down_block_types)
if len(num_attention_heads) != len(down_block_types):
raise ValueError(
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
)
# 5 - Create conditioning hint embedding
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0],
block_out_channels=conditioning_embedding_out_channels,
conditioning_channels=conditioning_channels,
)
# time
if learn_time_embedding:
self.time_embedding = TimestepEmbedding(time_embedding_input_dim, time_embedding_dim)
else:
self.time_embedding = None
self.down_blocks = nn.ModuleList([])
self.up_connections = nn.ModuleList([])
# input
self.conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
self.control_to_base_for_conv_in = make_zero_conv(block_out_channels[0], base_block_out_channels[0])
# down
base_out_channels = base_block_out_channels[0]
ctrl_out_channels = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
base_in_channels = base_out_channels
base_out_channels = base_block_out_channels[i]
ctrl_in_channels = ctrl_out_channels
ctrl_out_channels = block_out_channels[i]
has_crossattn = "CrossAttn" in down_block_type
is_final_block = i == len(down_block_types) - 1
self.down_blocks.append(
get_down_block_adapter(
base_in_channels=base_in_channels,
base_out_channels=base_out_channels,
ctrl_in_channels=ctrl_in_channels,
ctrl_out_channels=ctrl_out_channels,
temb_channels=time_embedding_dim,
max_norm_num_groups=max_norm_num_groups,
has_crossattn=has_crossattn,
transformer_layers_per_block=transformer_layers_per_block[i],
num_attention_heads=num_attention_heads[i],
cross_attention_dim=cross_attention_dim[i],
add_downsample=not is_final_block,
upcast_attention=upcast_attention,
)
)
# mid
self.mid_block = get_mid_block_adapter(
base_channels=base_block_out_channels[-1],
ctrl_channels=block_out_channels[-1],
temb_channels=time_embedding_dim,
transformer_layers_per_block=transformer_layers_per_block[-1],
num_attention_heads=num_attention_heads[-1],
cross_attention_dim=cross_attention_dim[-1],
upcast_attention=upcast_attention,
)
# up
# The skip connection channels are the output of the conv_in and of all the down subblocks
ctrl_skip_channels = [block_out_channels[0]]
for i, out_channels in enumerate(block_out_channels):
number_of_subblocks = (
3 if i < len(block_out_channels) - 1 else 2
) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
reversed_base_block_out_channels = list(reversed(base_block_out_channels))
base_out_channels = reversed_base_block_out_channels[0]
for i in range(len(down_block_types)):
prev_base_output_channel = base_out_channels
base_out_channels = reversed_base_block_out_channels[i]
ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
self.up_connections.append(
get_up_block_adapter(
out_channels=base_out_channels,
prev_output_channel=prev_base_output_channel,
ctrl_skip_channels=ctrl_skip_channels_,
)
)
@classmethod
def from_unet(
cls,
unet: UNet2DConditionModel,
size_ratio: Optional[float] = None,
block_out_channels: Optional[List[int]] = None,
num_attention_heads: Optional[List[int]] = None,
learn_time_embedding: bool = False,
time_embedding_mix: int = 1.0,
conditioning_channels: int = 3,
conditioning_channel_order: str = "rgb",
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
):
r"""
Instantiate a [`ControlNetXSAdapter`] from a [`UNet2DConditionModel`].
Parameters:
unet (`UNet2DConditionModel`):
The UNet model we want to control. The dimensions of the ControlNetXSAdapter will be adapted to it.
size_ratio (float, *optional*, defaults to `None`):
When given, block_out_channels is set to a fraction of the base model's block_out_channels. Either this
or `block_out_channels` must be given.
block_out_channels (`List[int]`, *optional*, defaults to `None`):
Down blocks output channels in control model. Either this or `size_ratio` must be given.
num_attention_heads (`List[int]`, *optional*, defaults to `None`):
The dimension of the attention heads. The naming seems a bit confusing and it is, see
https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
learn_time_embedding (`bool`, defaults to `False`):
Whether the `ControlNetXSAdapter` should learn a time embedding.
time_embedding_mix (`float`, defaults to 1.0):
If 0, then only the control adapter's time embedding is used. If 1, then only the base unet's time
embedding is used. Otherwise, both are combined.
conditioning_channels (`int`, defaults to 3):
Number of channels of conditioning input (e.g. an image)
conditioning_channel_order (`str`, defaults to `"rgb"`):
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`):
The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
"""
# Check input
fixed_size = block_out_channels is not None
relative_size = size_ratio is not None
if not (fixed_size ^ relative_size):
raise ValueError(
"Pass exactly one of `block_out_channels` (for absolute sizing) or `size_ratio` (for relative sizing)."
)
# Create model
block_out_channels = block_out_channels or [int(b * size_ratio) for b in unet.config.block_out_channels]
if num_attention_heads is None:
# The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
num_attention_heads = unet.config.attention_head_dim
model = cls(
conditioning_channels=conditioning_channels,
conditioning_channel_order=conditioning_channel_order,
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
time_embedding_mix=time_embedding_mix,
learn_time_embedding=learn_time_embedding,
num_attention_heads=num_attention_heads,
block_out_channels=block_out_channels,
base_block_out_channels=unet.config.block_out_channels,
cross_attention_dim=unet.config.cross_attention_dim,
down_block_types=unet.config.down_block_types,
sample_size=unet.config.sample_size,
transformer_layers_per_block=unet.config.transformer_layers_per_block,
upcast_attention=unet.config.upcast_attention,
max_norm_num_groups=unet.config.norm_num_groups,
)
# ensure that the ControlNetXSAdapter is the same dtype as the UNet2DConditionModel
model.to(unet.dtype)
return model
def forward(self, *args, **kwargs):
raise ValueError(
"A ControlNetXSAdapter cannot be run by itself. Use it together with a UNet2DConditionModel to instantiate a UNetControlNetXSModel."
)
class UNetControlNetXSModel(ModelMixin, ConfigMixin):
r"""
A UNet fused with a ControlNet-XS adapter model
This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
methods implemented for all models (such as downloading or saving).
`UNetControlNetXSModel` is compatible with StableDiffusion and StableDiffusion-XL. It's default parameters are
compatible with StableDiffusion.
It's parameters are either passed to the underlying `UNet2DConditionModel` or used exactly like in
`ControlNetXSAdapter` . See their documentation for details.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
# unet configs
sample_size: Optional[int] = 96,
down_block_types: Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
),
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
norm_num_groups: Optional[int] = 32,
cross_attention_dim: Union[int, Tuple[int]] = 1024,
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
num_attention_heads: Union[int, Tuple[int]] = 8,
addition_embed_type: Optional[str] = None,
addition_time_embed_dim: Optional[int] = None,
upcast_attention: bool = True,
time_cond_proj_dim: Optional[int] = None,
projection_class_embeddings_input_dim: Optional[int] = None,
# additional controlnet configs
time_embedding_mix: float = 1.0,
ctrl_conditioning_channels: int = 3,
ctrl_conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
ctrl_conditioning_channel_order: str = "rgb",
ctrl_learn_time_embedding: bool = False,
ctrl_block_out_channels: Tuple[int] = (4, 8, 16, 16),
ctrl_num_attention_heads: Union[int, Tuple[int]] = 4,
ctrl_max_norm_num_groups: int = 32,
):
super().__init__()
if time_embedding_mix < 0 or time_embedding_mix > 1:
raise ValueError("`time_embedding_mix` needs to be between 0 and 1.")
if time_embedding_mix < 1 and not ctrl_learn_time_embedding:
raise ValueError("To use `time_embedding_mix` < 1, `ctrl_learn_time_embedding` must be `True`")
if addition_embed_type is not None and addition_embed_type != "text_time":
raise ValueError(
"As `UNetControlNetXSModel` currently only supports StableDiffusion and StableDiffusion-XL, `addition_embed_type` must be `None` or `'text_time'`."
)
if not isinstance(transformer_layers_per_block, (list, tuple)):
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
if not isinstance(cross_attention_dim, (list, tuple)):
cross_attention_dim = [cross_attention_dim] * len(down_block_types)
if not isinstance(num_attention_heads, (list, tuple)):
num_attention_heads = [num_attention_heads] * len(down_block_types)
if not isinstance(ctrl_num_attention_heads, (list, tuple)):
ctrl_num_attention_heads = [ctrl_num_attention_heads] * len(down_block_types)
base_num_attention_heads = num_attention_heads
self.in_channels = 4
# # Input
self.base_conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
conditioning_embedding_channels=ctrl_block_out_channels[0],
block_out_channels=ctrl_conditioning_embedding_out_channels,
conditioning_channels=ctrl_conditioning_channels,
)
self.ctrl_conv_in = nn.Conv2d(4, ctrl_block_out_channels[0], kernel_size=3, padding=1)
self.control_to_base_for_conv_in = make_zero_conv(ctrl_block_out_channels[0], block_out_channels[0])
# # Time
time_embed_input_dim = block_out_channels[0]
time_embed_dim = block_out_channels[0] * 4
self.base_time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0)
self.base_time_embedding = TimestepEmbedding(
time_embed_input_dim,
time_embed_dim,
cond_proj_dim=time_cond_proj_dim,
)
self.ctrl_time_embedding = TimestepEmbedding(in_channels=time_embed_input_dim, time_embed_dim=time_embed_dim)
if addition_embed_type is None:
self.base_add_time_proj = None
self.base_add_embedding = None
else:
self.base_add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.base_add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
# # Create down blocks
down_blocks = []
base_out_channels = block_out_channels[0]
ctrl_out_channels = ctrl_block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
base_in_channels = base_out_channels
base_out_channels = block_out_channels[i]
ctrl_in_channels = ctrl_out_channels
ctrl_out_channels = ctrl_block_out_channels[i]
has_crossattn = "CrossAttn" in down_block_type
is_final_block = i == len(down_block_types) - 1
down_blocks.append(
ControlNetXSCrossAttnDownBlock2D(
base_in_channels=base_in_channels,
base_out_channels=base_out_channels,
ctrl_in_channels=ctrl_in_channels,
ctrl_out_channels=ctrl_out_channels,
temb_channels=time_embed_dim,
norm_num_groups=norm_num_groups,
ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
has_crossattn=has_crossattn,
transformer_layers_per_block=transformer_layers_per_block[i],
base_num_attention_heads=base_num_attention_heads[i],
ctrl_num_attention_heads=ctrl_num_attention_heads[i],
cross_attention_dim=cross_attention_dim[i],
add_downsample=not is_final_block,
upcast_attention=upcast_attention,
)
)
# # Create mid block
self.mid_block = ControlNetXSCrossAttnMidBlock2D(
base_channels=block_out_channels[-1],
ctrl_channels=ctrl_block_out_channels[-1],
temb_channels=time_embed_dim,
norm_num_groups=norm_num_groups,
ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
transformer_layers_per_block=transformer_layers_per_block[-1],
base_num_attention_heads=base_num_attention_heads[-1],
ctrl_num_attention_heads=ctrl_num_attention_heads[-1],
cross_attention_dim=cross_attention_dim[-1],
upcast_attention=upcast_attention,
)
# # Create up blocks
up_blocks = []
rev_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
rev_num_attention_heads = list(reversed(base_num_attention_heads))
rev_cross_attention_dim = list(reversed(cross_attention_dim))
# The skip connection channels are the output of the conv_in and of all the down subblocks
ctrl_skip_channels = [ctrl_block_out_channels[0]]
for i, out_channels in enumerate(ctrl_block_out_channels):
number_of_subblocks = (
3 if i < len(ctrl_block_out_channels) - 1 else 2
) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
reversed_block_out_channels = list(reversed(block_out_channels))
out_channels = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = out_channels
out_channels = reversed_block_out_channels[i]
in_channels = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
has_crossattn = "CrossAttn" in up_block_type
is_final_block = i == len(block_out_channels) - 1
up_blocks.append(
ControlNetXSCrossAttnUpBlock2D(
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channel,
ctrl_skip_channels=ctrl_skip_channels_,
temb_channels=time_embed_dim,
resolution_idx=i,
has_crossattn=has_crossattn,
transformer_layers_per_block=rev_transformer_layers_per_block[i],
num_attention_heads=rev_num_attention_heads[i],
cross_attention_dim=rev_cross_attention_dim[i],
add_upsample=not is_final_block,
upcast_attention=upcast_attention,
norm_num_groups=norm_num_groups,
)
)
self.down_blocks = nn.ModuleList(down_blocks)
self.up_blocks = nn.ModuleList(up_blocks)
self.base_conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups)
self.base_conv_act = nn.SiLU()
self.base_conv_out = nn.Conv2d(block_out_channels[0], 4, kernel_size=3, padding=1)
@classmethod
def from_unet(
cls,
unet: UNet2DConditionModel,
controlnet: Optional[ControlNetXSAdapter] = None,
size_ratio: Optional[float] = None,
ctrl_block_out_channels: Optional[List[float]] = None,
time_embedding_mix: Optional[float] = None,
ctrl_optional_kwargs: Optional[Dict] = None,
):
r"""
Instantiate a [`UNetControlNetXSModel`] from a [`UNet2DConditionModel`] and an optional [`ControlNetXSAdapter`]
.
Parameters:
unet (`UNet2DConditionModel`):
The UNet model we want to control.
controlnet (`ControlNetXSAdapter`):
The ConntrolNet-XS adapter with which the UNet will be fused. If none is given, a new ConntrolNet-XS
adapter will be created.
size_ratio (float, *optional*, defaults to `None`):
Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
ctrl_block_out_channels (`List[int]`, *optional*, defaults to `None`):
Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details,
where this parameter is called `block_out_channels`.
time_embedding_mix (`float`, *optional*, defaults to None):
Used to contruct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
ctrl_optional_kwargs (`Dict`, *optional*, defaults to `None`):
Passed to the `init` of the new controlent if no controlent was given.
"""
if controlnet is None:
controlnet = ControlNetXSAdapter.from_unet(
unet, size_ratio, ctrl_block_out_channels, **ctrl_optional_kwargs
)
else:
if any(
o is not None for o in (size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs)
):
raise ValueError(
"When a controlnet is passed, none of these parameters should be passed: size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs."
)
# # get params
params_for_unet = [
"sample_size",
"down_block_types",
"up_block_types",
"block_out_channels",
"norm_num_groups",
"cross_attention_dim",
"transformer_layers_per_block",
"addition_embed_type",
"addition_time_embed_dim",
"upcast_attention",
"time_cond_proj_dim",
"projection_class_embeddings_input_dim",
]
params_for_unet = {k: v for k, v in unet.config.items() if k in params_for_unet}
# The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
params_for_unet["num_attention_heads"] = unet.config.attention_head_dim
params_for_controlnet = [
"conditioning_channels",
"conditioning_embedding_out_channels",
"conditioning_channel_order",
"learn_time_embedding",
"block_out_channels",
"num_attention_heads",
"max_norm_num_groups",
]
params_for_controlnet = {"ctrl_" + k: v for k, v in controlnet.config.items() if k in params_for_controlnet}
params_for_controlnet["time_embedding_mix"] = controlnet.config.time_embedding_mix
# # create model
model = cls.from_config({**params_for_unet, **params_for_controlnet})
# # load weights
# from unet
modules_from_unet = [
"time_embedding",
"conv_in",
"conv_norm_out",
"conv_out",
]
for m in modules_from_unet:
getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
optional_modules_from_unet = [
"add_time_proj",
"add_embedding",
]
for m in optional_modules_from_unet:
if hasattr(unet, m) and getattr(unet, m) is not None:
getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
# from controlnet
model.controlnet_cond_embedding.load_state_dict(controlnet.controlnet_cond_embedding.state_dict())
model.ctrl_conv_in.load_state_dict(controlnet.conv_in.state_dict())
if controlnet.time_embedding is not None:
model.ctrl_time_embedding.load_state_dict(controlnet.time_embedding.state_dict())
model.control_to_base_for_conv_in.load_state_dict(controlnet.control_to_base_for_conv_in.state_dict())
# from both
model.down_blocks = nn.ModuleList(
ControlNetXSCrossAttnDownBlock2D.from_modules(b, c)
for b, c in zip(unet.down_blocks, controlnet.down_blocks)
)
model.mid_block = ControlNetXSCrossAttnMidBlock2D.from_modules(unet.mid_block, controlnet.mid_block)
model.up_blocks = nn.ModuleList(
ControlNetXSCrossAttnUpBlock2D.from_modules(b, c)
for b, c in zip(unet.up_blocks, controlnet.up_connections)
)
# ensure that the UNetControlNetXSModel is the same dtype as the UNet2DConditionModel
model.to(unet.dtype)
return model
def freeze_unet_params(self) -> None:
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
tuning."""
# Freeze everything
for param in self.parameters():
param.requires_grad = True
# Unfreeze ControlNetXSAdapter
base_parts = [
"base_time_proj",
"base_time_embedding",
"base_add_time_proj",
"base_add_embedding",
"base_conv_in",
"base_conv_norm_out",
"base_conv_act",
"base_conv_out",
]
base_parts = [getattr(self, part) for part in base_parts if getattr(self, part) is not None]
for part in base_parts:
for param in part.parameters():
param.requires_grad = False
for d in self.down_blocks:
d.freeze_base_params()
self.mid_block.freeze_base_params()
for u in self.up_blocks:
u.freeze_base_params()
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel
@property
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor)
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stage blocks where they are being applied.
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Args:
s1 (`float`):
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate the "oversmoothing effect" in the enhanced denoising process.
s2 (`float`):
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate the "oversmoothing effect" in the enhanced denoising process.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
for i, upsample_block in enumerate(self.up_blocks):
setattr(upsample_block, "s1", s1)
setattr(upsample_block, "s2", s2)
setattr(upsample_block, "b1", b1)
setattr(upsample_block, "b2", b2)
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
def disable_freeu(self):
"""Disables the FreeU mechanism."""
freeu_keys = {"s1", "s2", "b1", "b2"}
for i, upsample_block in enumerate(self.up_blocks):
for k in freeu_keys:
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
setattr(upsample_block, k, None)
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
# copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def forward(
self,
sample: FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
controlnet_cond: Optional[torch.Tensor] = None,
conditioning_scale: Optional[float] = 1.0,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
return_dict: bool = True,
apply_control: bool = True,
) -> Union[ControlNetXSOutput, Tuple]:
"""
The [`ControlNetXSModel`] forward method.
Args:
sample (`FloatTensor`):
The noisy input tensor.
timestep (`Union[torch.Tensor, float, int]`):
The number of timesteps to denoise an input.
encoder_hidden_states (`torch.Tensor`):
The encoder hidden states.
controlnet_cond (`FloatTensor`):
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
conditioning_scale (`float`, defaults to `1.0`):
How much the control model affects the base model outputs.
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
embeddings.
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
added_cond_kwargs (`dict`):
Additional conditions for the Stable Diffusion XL UNet.
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
apply_control (`bool`, defaults to `True`):
If `False`, the input is run only through the base model.
Returns:
[`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`:
If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
# check channel order
if self.config.ctrl_conditioning_channel_order == "bgr":
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.base_time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
if self.config.ctrl_learn_time_embedding and apply_control:
ctrl_temb = self.ctrl_time_embedding(t_emb, timestep_cond)
base_temb = self.base_time_embedding(t_emb, timestep_cond)
interpolation_param = self.config.time_embedding_mix**0.3
temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param)
else:
temb = self.base_time_embedding(t_emb)
# added time & text embeddings
aug_emb = None
if self.config.addition_embed_type is None:
pass
elif self.config.addition_embed_type == "text_time":
# SDXL - style
if "text_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
)
text_embeds = added_cond_kwargs.get("text_embeds")
if "time_ids" not in added_cond_kwargs:
raise ValueError(
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
)
time_ids = added_cond_kwargs.get("time_ids")
time_embeds = self.base_add_time_proj(time_ids.flatten())
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
add_embeds = add_embeds.to(temb.dtype)
aug_emb = self.base_add_embedding(add_embeds)
else:
raise ValueError(
f"ControlNet-XS currently only supports StableDiffusion and StableDiffusion-XL, so addition_embed_type = {self.config.addition_embed_type} is currently not supported."
)
temb = temb + aug_emb if aug_emb is not None else temb
# text embeddings
cemb = encoder_hidden_states
# Preparation
h_ctrl = h_base = sample
hs_base, hs_ctrl = [], []
# Cross Control
guided_hint = self.controlnet_cond_embedding(controlnet_cond)
# 1 - conv in & down
h_base = self.base_conv_in(h_base)
h_ctrl = self.ctrl_conv_in(h_ctrl)
if guided_hint is not None:
h_ctrl += guided_hint
if apply_control:
h_base = h_base + self.control_to_base_for_conv_in(h_ctrl) * conditioning_scale # add ctrl -> base
hs_base.append(h_base)
hs_ctrl.append(h_ctrl)
for down in self.down_blocks:
h_base, h_ctrl, residual_hb, residual_hc = down(
hidden_states_base=h_base,
hidden_states_ctrl=h_ctrl,
temb=temb,
encoder_hidden_states=cemb,
conditioning_scale=conditioning_scale,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
apply_control=apply_control,
)
hs_base.extend(residual_hb)
hs_ctrl.extend(residual_hc)
# 2 - mid
h_base, h_ctrl = self.mid_block(
hidden_states_base=h_base,
hidden_states_ctrl=h_ctrl,
temb=temb,
encoder_hidden_states=cemb,
conditioning_scale=conditioning_scale,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
apply_control=apply_control,
)
# 3 - up
for up in self.up_blocks:
n_resnets = len(up.resnets)
skips_hb = hs_base[-n_resnets:]
skips_hc = hs_ctrl[-n_resnets:]
hs_base = hs_base[:-n_resnets]
hs_ctrl = hs_ctrl[:-n_resnets]
h_base = up(
hidden_states=h_base,
res_hidden_states_tuple_base=skips_hb,
res_hidden_states_tuple_ctrl=skips_hc,
temb=temb,
encoder_hidden_states=cemb,
conditioning_scale=conditioning_scale,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
apply_control=apply_control,
)
# 4 - conv out
h_base = self.base_conv_norm_out(h_base)
h_base = self.base_conv_act(h_base)
h_base = self.base_conv_out(h_base)
if not return_dict:
return (h_base,)
return ControlNetXSOutput(sample=h_base)
class ControlNetXSCrossAttnDownBlock2D(nn.Module):
def __init__(
self,
base_in_channels: int,
base_out_channels: int,
ctrl_in_channels: int,
ctrl_out_channels: int,
temb_channels: int,
norm_num_groups: int = 32,
ctrl_max_norm_num_groups: int = 32,
has_crossattn=True,
transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
base_num_attention_heads: Optional[int] = 1,
ctrl_num_attention_heads: Optional[int] = 1,
cross_attention_dim: Optional[int] = 1024,
add_downsample: bool = True,
upcast_attention: Optional[bool] = False,
):
super().__init__()
base_resnets = []
base_attentions = []
ctrl_resnets = []
ctrl_attentions = []
ctrl_to_base = []
base_to_ctrl = []
num_layers = 2 # only support sd + sdxl
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
base_in_channels = base_in_channels if i == 0 else base_out_channels
ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
# Before the resnet/attention application, information is concatted from base to control.
# Concat doesn't require change in number of channels
base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
base_resnets.append(
ResnetBlock2D(
in_channels=base_in_channels,
out_channels=base_out_channels,
temb_channels=temb_channels,
groups=norm_num_groups,
)
)
ctrl_resnets.append(
ResnetBlock2D(
in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
out_channels=ctrl_out_channels,
temb_channels=temb_channels,
groups=find_largest_factor(
ctrl_in_channels + base_in_channels, max_factor=ctrl_max_norm_num_groups
),
groups_out=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
eps=1e-5,
)
)
if has_crossattn:
base_attentions.append(
Transformer2DModel(
base_num_attention_heads,
base_out_channels // base_num_attention_heads,
in_channels=base_out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
use_linear_projection=True,
upcast_attention=upcast_attention,
norm_num_groups=norm_num_groups,
)
)
ctrl_attentions.append(
Transformer2DModel(
ctrl_num_attention_heads,
ctrl_out_channels // ctrl_num_attention_heads,
in_channels=ctrl_out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
use_linear_projection=True,
upcast_attention=upcast_attention,
norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
)
)
# After the resnet/attention application, information is added from control to base
# Addition requires change in number of channels
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
if add_downsample:
# Before the downsampler application, information is concatted from base to control
# Concat doesn't require change in number of channels
base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
self.base_downsamplers = Downsample2D(
base_out_channels, use_conv=True, out_channels=base_out_channels, name="op"
)
self.ctrl_downsamplers = Downsample2D(
ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
)
# After the downsampler application, information is added from control to base
# Addition requires change in number of channels
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
else:
self.base_downsamplers = None
self.ctrl_downsamplers = None
self.base_resnets = nn.ModuleList(base_resnets)
self.ctrl_resnets = nn.ModuleList(ctrl_resnets)
self.base_attentions = nn.ModuleList(base_attentions) if has_crossattn else [None] * num_layers
self.ctrl_attentions = nn.ModuleList(ctrl_attentions) if has_crossattn else [None] * num_layers
self.base_to_ctrl = nn.ModuleList(base_to_ctrl)
self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
self.gradient_checkpointing = False
@classmethod
def from_modules(cls, base_downblock: CrossAttnDownBlock2D, ctrl_downblock: DownBlockControlNetXSAdapter):
# get params
def get_first_cross_attention(block):
return block.attentions[0].transformer_blocks[0].attn2
base_in_channels = base_downblock.resnets[0].in_channels
base_out_channels = base_downblock.resnets[0].out_channels
ctrl_in_channels = (
ctrl_downblock.resnets[0].in_channels - base_in_channels
) # base channels are concatted to ctrl channels in init
ctrl_out_channels = ctrl_downblock.resnets[0].out_channels
temb_channels = base_downblock.resnets[0].time_emb_proj.in_features
num_groups = base_downblock.resnets[0].norm1.num_groups
ctrl_num_groups = ctrl_downblock.resnets[0].norm1.num_groups
if hasattr(base_downblock, "attentions"):
has_crossattn = True
transformer_layers_per_block = len(base_downblock.attentions[0].transformer_blocks)
base_num_attention_heads = get_first_cross_attention(base_downblock).heads
ctrl_num_attention_heads = get_first_cross_attention(ctrl_downblock).heads
cross_attention_dim = get_first_cross_attention(base_downblock).cross_attention_dim
upcast_attention = get_first_cross_attention(base_downblock).upcast_attention
else:
has_crossattn = False
transformer_layers_per_block = None
base_num_attention_heads = None
ctrl_num_attention_heads = None
cross_attention_dim = None
upcast_attention = None
add_downsample = base_downblock.downsamplers is not None
# create model
model = cls(
base_in_channels=base_in_channels,
base_out_channels=base_out_channels,
ctrl_in_channels=ctrl_in_channels,
ctrl_out_channels=ctrl_out_channels,
temb_channels=temb_channels,
norm_num_groups=num_groups,
ctrl_max_norm_num_groups=ctrl_num_groups,
has_crossattn=has_crossattn,
transformer_layers_per_block=transformer_layers_per_block,
base_num_attention_heads=base_num_attention_heads,
ctrl_num_attention_heads=ctrl_num_attention_heads,
cross_attention_dim=cross_attention_dim,
add_downsample=add_downsample,
upcast_attention=upcast_attention,
)
# # load weights
model.base_resnets.load_state_dict(base_downblock.resnets.state_dict())
model.ctrl_resnets.load_state_dict(ctrl_downblock.resnets.state_dict())
if has_crossattn:
model.base_attentions.load_state_dict(base_downblock.attentions.state_dict())
model.ctrl_attentions.load_state_dict(ctrl_downblock.attentions.state_dict())
if add_downsample:
model.base_downsamplers.load_state_dict(base_downblock.downsamplers[0].state_dict())
model.ctrl_downsamplers.load_state_dict(ctrl_downblock.downsamplers.state_dict())
model.base_to_ctrl.load_state_dict(ctrl_downblock.base_to_ctrl.state_dict())
model.ctrl_to_base.load_state_dict(ctrl_downblock.ctrl_to_base.state_dict())
return model
def freeze_base_params(self) -> None:
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
tuning."""
# Unfreeze everything
for param in self.parameters():
param.requires_grad = True
# Freeze base part
base_parts = [self.base_resnets]
if isinstance(self.base_attentions, nn.ModuleList): # attentions can be a list of Nones
base_parts.append(self.base_attentions)
if self.base_downsamplers is not None:
base_parts.append(self.base_downsamplers)
for part in base_parts:
for param in part.parameters():
param.requires_grad = False
def forward(
self,
hidden_states_base: FloatTensor,
temb: FloatTensor,
encoder_hidden_states: Optional[FloatTensor] = None,
hidden_states_ctrl: Optional[FloatTensor] = None,
conditioning_scale: Optional[float] = 1.0,
attention_mask: Optional[FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
encoder_attention_mask: Optional[FloatTensor] = None,
apply_control: bool = True,
) -> Tuple[FloatTensor, FloatTensor, Tuple[FloatTensor, ...], Tuple[FloatTensor, ...]]:
if cross_attention_kwargs is not None:
if cross_attention_kwargs.get("scale", None) is not None:
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
h_base = hidden_states_base
h_ctrl = hidden_states_ctrl
base_output_states = ()
ctrl_output_states = ()
base_blocks = list(zip(self.base_resnets, self.base_attentions))
ctrl_blocks = list(zip(self.ctrl_resnets, self.ctrl_attentions))
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
for (b_res, b_attn), (c_res, c_attn), b2c, c2b in zip(
base_blocks, ctrl_blocks, self.base_to_ctrl, self.ctrl_to_base
):
# concat base -> ctrl
if apply_control:
h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
# apply base subblock
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
h_base = torch.utils.checkpoint.checkpoint(
create_custom_forward(b_res),
h_base,
temb,
**ckpt_kwargs,
)
else:
h_base = b_res(h_base, temb)
if b_attn is not None:
h_base = b_attn(
h_base,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
# apply ctrl subblock
if apply_control:
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
h_ctrl = torch.utils.checkpoint.checkpoint(
create_custom_forward(c_res),
h_ctrl,
temb,
**ckpt_kwargs,
)
else:
h_ctrl = c_res(h_ctrl, temb)
if c_attn is not None:
h_ctrl = c_attn(
h_ctrl,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
# add ctrl -> base
if apply_control:
h_base = h_base + c2b(h_ctrl) * conditioning_scale
base_output_states = base_output_states + (h_base,)
ctrl_output_states = ctrl_output_states + (h_ctrl,)
if self.base_downsamplers is not None: # if we have a base_downsampler, then also a ctrl_downsampler
b2c = self.base_to_ctrl[-1]
c2b = self.ctrl_to_base[-1]
# concat base -> ctrl
if apply_control:
h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
# apply base subblock
h_base = self.base_downsamplers(h_base)
# apply ctrl subblock
if apply_control:
h_ctrl = self.ctrl_downsamplers(h_ctrl)
# add ctrl -> base
if apply_control:
h_base = h_base + c2b(h_ctrl) * conditioning_scale
base_output_states = base_output_states + (h_base,)
ctrl_output_states = ctrl_output_states + (h_ctrl,)
return h_base, h_ctrl, base_output_states, ctrl_output_states
class ControlNetXSCrossAttnMidBlock2D(nn.Module):
def __init__(
self,
base_channels: int,
ctrl_channels: int,
temb_channels: Optional[int] = None,
norm_num_groups: int = 32,
ctrl_max_norm_num_groups: int = 32,
transformer_layers_per_block: int = 1,
base_num_attention_heads: Optional[int] = 1,
ctrl_num_attention_heads: Optional[int] = 1,
cross_attention_dim: Optional[int] = 1024,
upcast_attention: bool = False,
):
super().__init__()
# Before the midblock application, information is concatted from base to control.
# Concat doesn't require change in number of channels
self.base_to_ctrl = make_zero_conv(base_channels, base_channels)
self.base_midblock = UNetMidBlock2DCrossAttn(
transformer_layers_per_block=transformer_layers_per_block,
in_channels=base_channels,
temb_channels=temb_channels,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
num_attention_heads=base_num_attention_heads,
use_linear_projection=True,
upcast_attention=upcast_attention,
)
self.ctrl_midblock = UNetMidBlock2DCrossAttn(
transformer_layers_per_block=transformer_layers_per_block,
in_channels=ctrl_channels + base_channels,
out_channels=ctrl_channels,
temb_channels=temb_channels,
# number or norm groups must divide both in_channels and out_channels
resnet_groups=find_largest_factor(
gcd(ctrl_channels, ctrl_channels + base_channels), ctrl_max_norm_num_groups
),
cross_attention_dim=cross_attention_dim,
num_attention_heads=ctrl_num_attention_heads,
use_linear_projection=True,
upcast_attention=upcast_attention,
)
# After the midblock application, information is added from control to base
# Addition requires change in number of channels
self.ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
self.gradient_checkpointing = False
@classmethod
def from_modules(
cls,
base_midblock: UNetMidBlock2DCrossAttn,
ctrl_midblock: MidBlockControlNetXSAdapter,
):
base_to_ctrl = ctrl_midblock.base_to_ctrl
ctrl_to_base = ctrl_midblock.ctrl_to_base
ctrl_midblock = ctrl_midblock.midblock
# get params
def get_first_cross_attention(midblock):
return midblock.attentions[0].transformer_blocks[0].attn2
base_channels = ctrl_to_base.out_channels
ctrl_channels = ctrl_to_base.in_channels
transformer_layers_per_block = len(base_midblock.attentions[0].transformer_blocks)
temb_channels = base_midblock.resnets[0].time_emb_proj.in_features
num_groups = base_midblock.resnets[0].norm1.num_groups
ctrl_num_groups = ctrl_midblock.resnets[0].norm1.num_groups
base_num_attention_heads = get_first_cross_attention(base_midblock).heads
ctrl_num_attention_heads = get_first_cross_attention(ctrl_midblock).heads
cross_attention_dim = get_first_cross_attention(base_midblock).cross_attention_dim
upcast_attention = get_first_cross_attention(base_midblock).upcast_attention
# create model
model = cls(
base_channels=base_channels,
ctrl_channels=ctrl_channels,
temb_channels=temb_channels,
norm_num_groups=num_groups,
ctrl_max_norm_num_groups=ctrl_num_groups,
transformer_layers_per_block=transformer_layers_per_block,
base_num_attention_heads=base_num_attention_heads,
ctrl_num_attention_heads=ctrl_num_attention_heads,
cross_attention_dim=cross_attention_dim,
upcast_attention=upcast_attention,
)
# load weights
model.base_to_ctrl.load_state_dict(base_to_ctrl.state_dict())
model.base_midblock.load_state_dict(base_midblock.state_dict())
model.ctrl_midblock.load_state_dict(ctrl_midblock.state_dict())
model.ctrl_to_base.load_state_dict(ctrl_to_base.state_dict())
return model
def freeze_base_params(self) -> None:
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
tuning."""
# Unfreeze everything
for param in self.parameters():
param.requires_grad = True
# Freeze base part
for param in self.base_midblock.parameters():
param.requires_grad = False
def forward(
self,
hidden_states_base: FloatTensor,
temb: FloatTensor,
encoder_hidden_states: FloatTensor,
hidden_states_ctrl: Optional[FloatTensor] = None,
conditioning_scale: Optional[float] = 1.0,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
attention_mask: Optional[FloatTensor] = None,
encoder_attention_mask: Optional[FloatTensor] = None,
apply_control: bool = True,
) -> Tuple[FloatTensor, FloatTensor]:
if cross_attention_kwargs is not None:
if cross_attention_kwargs.get("scale", None) is not None:
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
h_base = hidden_states_base
h_ctrl = hidden_states_ctrl
joint_args = {
"temb": temb,
"encoder_hidden_states": encoder_hidden_states,
"attention_mask": attention_mask,
"cross_attention_kwargs": cross_attention_kwargs,
"encoder_attention_mask": encoder_attention_mask,
}
if apply_control:
h_ctrl = torch.cat([h_ctrl, self.base_to_ctrl(h_base)], dim=1) # concat base -> ctrl
h_base = self.base_midblock(h_base, **joint_args) # apply base mid block
if apply_control:
h_ctrl = self.ctrl_midblock(h_ctrl, **joint_args) # apply ctrl mid block
h_base = h_base + self.ctrl_to_base(h_ctrl) * conditioning_scale # add ctrl -> base
return h_base, h_ctrl
class ControlNetXSCrossAttnUpBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
prev_output_channel: int,
ctrl_skip_channels: List[int],
temb_channels: int,
norm_num_groups: int = 32,
resolution_idx: Optional[int] = None,
has_crossattn=True,
transformer_layers_per_block: int = 1,
num_attention_heads: int = 1,
cross_attention_dim: int = 1024,
add_upsample: bool = True,
upcast_attention: bool = False,
):
super().__init__()
resnets = []
attentions = []
ctrl_to_base = []
num_layers = 3 # only support sd + sdxl
self.has_cross_attention = has_crossattn
self.num_attention_heads = num_attention_heads
if isinstance(transformer_layers_per_block, int):
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
for i in range(num_layers):
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
resnet_in_channels = prev_output_channel if i == 0 else out_channels
ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
resnets.append(
ResnetBlock2D(
in_channels=resnet_in_channels + res_skip_channels,
out_channels=out_channels,
temb_channels=temb_channels,
groups=norm_num_groups,
)
)
if has_crossattn:
attentions.append(
Transformer2DModel(
num_attention_heads,
out_channels // num_attention_heads,
in_channels=out_channels,
num_layers=transformer_layers_per_block[i],
cross_attention_dim=cross_attention_dim,
use_linear_projection=True,
upcast_attention=upcast_attention,
norm_num_groups=norm_num_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.attentions = nn.ModuleList(attentions) if has_crossattn else [None] * num_layers
self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
if add_upsample:
self.upsamplers = Upsample2D(out_channels, use_conv=True, out_channels=out_channels)
else:
self.upsamplers = None
self.gradient_checkpointing = False
self.resolution_idx = resolution_idx
@classmethod
def from_modules(cls, base_upblock: CrossAttnUpBlock2D, ctrl_upblock: UpBlockControlNetXSAdapter):
ctrl_to_base_skip_connections = ctrl_upblock.ctrl_to_base
# get params
def get_first_cross_attention(block):
return block.attentions[0].transformer_blocks[0].attn2
out_channels = base_upblock.resnets[0].out_channels
in_channels = base_upblock.resnets[-1].in_channels - out_channels
prev_output_channels = base_upblock.resnets[0].in_channels - out_channels
ctrl_skip_channelss = [c.in_channels for c in ctrl_to_base_skip_connections]
temb_channels = base_upblock.resnets[0].time_emb_proj.in_features
num_groups = base_upblock.resnets[0].norm1.num_groups
resolution_idx = base_upblock.resolution_idx
if hasattr(base_upblock, "attentions"):
has_crossattn = True
transformer_layers_per_block = len(base_upblock.attentions[0].transformer_blocks)
num_attention_heads = get_first_cross_attention(base_upblock).heads
cross_attention_dim = get_first_cross_attention(base_upblock).cross_attention_dim
upcast_attention = get_first_cross_attention(base_upblock).upcast_attention
else:
has_crossattn = False
transformer_layers_per_block = None
num_attention_heads = None
cross_attention_dim = None
upcast_attention = None
add_upsample = base_upblock.upsamplers is not None
# create model
model = cls(
in_channels=in_channels,
out_channels=out_channels,
prev_output_channel=prev_output_channels,
ctrl_skip_channels=ctrl_skip_channelss,
temb_channels=temb_channels,
norm_num_groups=num_groups,
resolution_idx=resolution_idx,
has_crossattn=has_crossattn,
transformer_layers_per_block=transformer_layers_per_block,
num_attention_heads=num_attention_heads,
cross_attention_dim=cross_attention_dim,
add_upsample=add_upsample,
upcast_attention=upcast_attention,
)
# load weights
model.resnets.load_state_dict(base_upblock.resnets.state_dict())
if has_crossattn:
model.attentions.load_state_dict(base_upblock.attentions.state_dict())
if add_upsample:
model.upsamplers.load_state_dict(base_upblock.upsamplers[0].state_dict())
model.ctrl_to_base.load_state_dict(ctrl_to_base_skip_connections.state_dict())
return model
def freeze_base_params(self) -> None:
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
tuning."""
# Unfreeze everything
for param in self.parameters():
param.requires_grad = True
# Freeze base part
base_parts = [self.resnets]
if isinstance(self.attentions, nn.ModuleList): # attentions can be a list of Nones
base_parts.append(self.attentions)
if self.upsamplers is not None:
base_parts.append(self.upsamplers)
for part in base_parts:
for param in part.parameters():
param.requires_grad = False
def forward(
self,
hidden_states: FloatTensor,
res_hidden_states_tuple_base: Tuple[FloatTensor, ...],
res_hidden_states_tuple_ctrl: Tuple[FloatTensor, ...],
temb: FloatTensor,
encoder_hidden_states: Optional[FloatTensor] = None,
conditioning_scale: Optional[float] = 1.0,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
attention_mask: Optional[FloatTensor] = None,
upsample_size: Optional[int] = None,
encoder_attention_mask: Optional[FloatTensor] = None,
apply_control: bool = True,
) -> FloatTensor:
if cross_attention_kwargs is not None:
if cross_attention_kwargs.get("scale", None) is not None:
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
is_freeu_enabled = (
getattr(self, "s1", None)
and getattr(self, "s2", None)
and getattr(self, "b1", None)
and getattr(self, "b2", None)
)
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
def maybe_apply_freeu_to_subblock(hidden_states, res_h_base):
# FreeU: Only operate on the first two stages
if is_freeu_enabled:
return apply_freeu(
self.resolution_idx,
hidden_states,
res_h_base,
s1=self.s1,
s2=self.s2,
b1=self.b1,
b2=self.b2,
)
else:
return hidden_states, res_h_base
for resnet, attn, c2b, res_h_base, res_h_ctrl in zip(
self.resnets,
self.attentions,
self.ctrl_to_base,
reversed(res_hidden_states_tuple_base),
reversed(res_hidden_states_tuple_ctrl),
):
if apply_control:
hidden_states += c2b(res_h_ctrl) * conditioning_scale
hidden_states, res_h_base = maybe_apply_freeu_to_subblock(hidden_states, res_h_base)
hidden_states = torch.cat([hidden_states, res_h_base], dim=1)
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
**ckpt_kwargs,
)
else:
hidden_states = resnet(hidden_states, temb)
if attn is not None:
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
return_dict=False,
)[0]
if self.upsamplers is not None:
hidden_states = self.upsamplers(hidden_states, upsample_size)
return hidden_states
def make_zero_conv(in_channels, out_channels=None):
return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0))
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
def find_largest_factor(number, max_factor):
factor = max_factor
if factor >= number:
return number
while factor != 0:
residual = number % factor
if residual == 0:
return factor
factor -= 1
|