File size: 3,705 Bytes
f369784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from typing import TYPE_CHECKING

from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available


def text_encoder_lora_state_dict(text_encoder):
    deprecate(
        "text_encoder_load_state_dict in `models`",
        "0.27.0",
        "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co./docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
    )
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


if is_transformers_available():

    def text_encoder_attn_modules(text_encoder):
        deprecate(
            "text_encoder_attn_modules in `models`",
            "0.27.0",
            "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co./docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
        )
        from transformers import CLIPTextModel, CLIPTextModelWithProjection

        attn_modules = []

        if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
            for i, layer in enumerate(text_encoder.text_model.encoder.layers):
                name = f"text_model.encoder.layers.{i}.self_attn"
                mod = layer.self_attn
                attn_modules.append((name, mod))
        else:
            raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

        return attn_modules


_import_structure = {}

if is_torch_available():
    _import_structure["autoencoder"] = ["FromOriginalVAEMixin"]

    _import_structure["controlnet"] = ["FromOriginalControlNetMixin"]
    _import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
    _import_structure["utils"] = ["AttnProcsLayers"]
    if is_transformers_available():
        _import_structure["single_file"] = ["FromSingleFileMixin"]
        _import_structure["lora"] = ["LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin"]
        _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
        _import_structure["ip_adapter"] = ["IPAdapterMixin"]

_import_structure["peft"] = ["PeftAdapterMixin"]


if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
    if is_torch_available():
        from .autoencoder import FromOriginalVAEMixin
        from .controlnet import FromOriginalControlNetMixin
        from .unet import UNet2DConditionLoadersMixin
        from .utils import AttnProcsLayers

        if is_transformers_available():
            from .ip_adapter import IPAdapterMixin
            from .lora import LoraLoaderMixin, StableDiffusionXLLoraLoaderMixin
            from .single_file import FromSingleFileMixin
            from .textual_inversion import TextualInversionLoaderMixin

    from .peft import PeftAdapterMixin
else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)