Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,335 Bytes
62c110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Optional, Union
import torch
from huggingface_hub.utils import validate_hf_hub_args
from ..utils import BaseOutput, PushToHubMixin
SCHEDULER_CONFIG_NAME = "scheduler_config.json"
# NOTE: We make this type an enum because it simplifies usage in docs and prevents
# circular imports when used for `_compatibles` within the schedulers module.
# When it's used as a type in pipelines, it really is a Union because the actual
# scheduler instance is passed in.
class KarrasDiffusionSchedulers(Enum):
DDIMScheduler = 1
DDPMScheduler = 2
PNDMScheduler = 3
LMSDiscreteScheduler = 4
EulerDiscreteScheduler = 5
HeunDiscreteScheduler = 6
EulerAncestralDiscreteScheduler = 7
DPMSolverMultistepScheduler = 8
DPMSolverSinglestepScheduler = 9
KDPM2DiscreteScheduler = 10
KDPM2AncestralDiscreteScheduler = 11
DEISMultistepScheduler = 12
UniPCMultistepScheduler = 13
DPMSolverSDEScheduler = 14
EDMEulerScheduler = 15
@dataclass
class SchedulerOutput(BaseOutput):
"""
Base class for the output of a scheduler's `step` function.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class SchedulerMixin(PushToHubMixin):
"""
Base class for all schedulers.
[`SchedulerMixin`] contains common functions shared by all schedulers such as general loading and saving
functionalities.
[`ConfigMixin`] takes care of storing the configuration attributes (like `num_train_timesteps`) that are passed to
the scheduler's `__init__` function, and the attributes can be accessed by `scheduler.config.num_train_timesteps`.
Class attributes:
- **_compatibles** (`List[str]`) -- A list of scheduler classes that are compatible with the parent scheduler
class. Use [`~ConfigMixin.from_config`] to load a different compatible scheduler class (should be overridden
by parent class).
"""
config_name = SCHEDULER_CONFIG_NAME
_compatibles = []
has_compatibles = True
@classmethod
@validate_hf_hub_args
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
subfolder: Optional[str] = None,
return_unused_kwargs=False,
**kwargs,
):
r"""
Instantiate a scheduler from a pre-defined JSON configuration file in a local directory or Hub repository.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the scheduler
configuration saved with [`~SchedulerMixin.save_pretrained`].
subfolder (`str`, *optional*):
The subfolder location of a model file within a larger model repository on the Hub or locally.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
Whether kwargs that are not consumed by the Python class should be returned or not.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
of Diffusers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`):
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
<Tip>
To use private or [gated models](https://huggingface.co./docs/hub/models-gated#gated-models), log-in with
`huggingface-cli login`. You can also activate the special
["offline-mode"](https://huggingface.co./diffusers/installation.html#offline-mode) to use this method in a
firewalled environment.
</Tip>
"""
config, kwargs, commit_hash = cls.load_config(
pretrained_model_name_or_path=pretrained_model_name_or_path,
subfolder=subfolder,
return_unused_kwargs=True,
return_commit_hash=True,
**kwargs,
)
return cls.from_config(config, return_unused_kwargs=return_unused_kwargs, **kwargs)
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
"""
Save a scheduler configuration object to a directory so that it can be reloaded using the
[`~SchedulerMixin.from_pretrained`] class method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the configuration JSON file will be saved (will be created if it does not exist).
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs)
@property
def compatibles(self):
"""
Returns all schedulers that are compatible with this scheduler
Returns:
`List[SchedulerMixin]`: List of compatible schedulers
"""
return self._get_compatibles()
@classmethod
def _get_compatibles(cls):
compatible_classes_str = list(set([cls.__name__] + cls._compatibles))
diffusers_library = importlib.import_module(__name__.split(".")[0])
compatible_classes = [
getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c)
]
return compatible_classes
|