Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,472 Bytes
62c110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import SchedulerMixin
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
class EDMEulerSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
"""
Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1].
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
https://arxiv.org/abs/2206.00364
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
sigma_min (`float`, *optional*, defaults to 0.002):
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable
range is [0, 10].
sigma_max (`float`, *optional*, defaults to 80.0):
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable
range is [0.2, 80.0].
sigma_data (`float`, *optional*, defaults to 0.5):
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1].
sigma_schedule (`str`, *optional*, defaults to `karras`):
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
incorporated in this model: https://huggingface.co./stabilityai/cosxl.
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
rho (`float`, *optional*, defaults to 7.0):
The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1].
"""
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
sigma_min: float = 0.002,
sigma_max: float = 80.0,
sigma_data: float = 0.5,
sigma_schedule: str = "karras",
num_train_timesteps: int = 1000,
prediction_type: str = "epsilon",
rho: float = 7.0,
):
if sigma_schedule not in ["karras", "exponential"]:
raise ValueError(f"Wrong value for provided for `{sigma_schedule=}`.`")
# setable values
self.num_inference_steps = None
ramp = torch.linspace(0, 1, num_train_timesteps)
if sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self.is_scale_input_called = False
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
return (self.config.sigma_max**2 + 1) ** 0.5
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def precondition_inputs(self, sample, sigma):
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
scaled_sample = sample * c_in
return scaled_sample
def precondition_noise(self, sigma):
if not isinstance(sigma, torch.Tensor):
sigma = torch.tensor([sigma])
c_noise = 0.25 * torch.log(sigma)
return c_noise
def precondition_outputs(self, sample, model_output, sigma):
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
if self.config.prediction_type == "epsilon":
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
elif self.config.prediction_type == "v_prediction":
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
else:
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
denoised = c_skip * sample + c_out * model_output
return denoised
def scale_model_input(
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
Args:
sample (`torch.FloatTensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.FloatTensor`:
A scaled input sample.
"""
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sample = self.precondition_inputs(sample, sigma)
self.is_scale_input_called = True
return sample
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
ramp = np.linspace(0, 1, self.num_inference_steps)
if self.config.sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif self.config.sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min = sigma_min or self.config.sigma_min
sigma_max = sigma_max or self.config.sigma_max
rho = self.config.rho
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor:
"""Implementation closely follows k-diffusion.
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
"""
sigma_min = sigma_min or self.config.sigma_min
sigma_max = sigma_max or self.config.sigma_max
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[EDMEulerSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
s_churn (`float`):
s_tmin (`float`):
s_tmax (`float`):
s_noise (`float`, defaults to 1.0):
Scaling factor for noise added to the sample.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or tuple.
Returns:
[`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EDMEulerScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if not self.is_scale_input_called:
logger.warning(
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
"See `StableDiffusionPipeline` for a usage example."
)
if self.step_index is None:
self._init_step_index(timestep)
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
sigma = self.sigmas[self.step_index]
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
noise = randn_tensor(
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
)
eps = noise * s_noise
sigma_hat = sigma * (gamma + 1)
if gamma > 0:
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat)
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma_hat
dt = self.sigmas[self.step_index + 1] - sigma_hat
prev_sample = sample + derivative * dt
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
|