Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,731 Bytes
62c110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
)
@flax.struct.dataclass
class DPMSolverMultistepSchedulerState:
common: CommonSchedulerState
alpha_t: jnp.ndarray
sigma_t: jnp.ndarray
lambda_t: jnp.ndarray
# setable values
init_noise_sigma: jnp.ndarray
timesteps: jnp.ndarray
num_inference_steps: Optional[int] = None
# running values
model_outputs: Optional[jnp.ndarray] = None
lower_order_nums: Optional[jnp.int32] = None
prev_timestep: Optional[jnp.int32] = None
cur_sample: Optional[jnp.ndarray] = None
@classmethod
def create(
cls,
common: CommonSchedulerState,
alpha_t: jnp.ndarray,
sigma_t: jnp.ndarray,
lambda_t: jnp.ndarray,
init_noise_sigma: jnp.ndarray,
timesteps: jnp.ndarray,
):
return cls(
common=common,
alpha_t=alpha_t,
sigma_t=sigma_t,
lambda_t=lambda_t,
init_noise_sigma=init_noise_sigma,
timesteps=timesteps,
)
@dataclass
class FlaxDPMSolverMultistepSchedulerOutput(FlaxSchedulerOutput):
state: DPMSolverMultistepSchedulerState
class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin):
"""
DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with
the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality
samples, and it can generate quite good samples even in only 10 steps.
For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095
Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We
recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as
stable-diffusion).
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
solver_order (`int`, default `2`):
the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided
sampling, and `solver_order=3` for unconditional sampling.
prediction_type (`str`, default `epsilon`):
indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`,
or `v-prediction`.
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to
use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion
models (such as stable-diffusion).
dynamic_thresholding_ratio (`float`, default `0.995`):
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
(https://arxiv.org/abs/2205.11487).
sample_max_value (`float`, default `1.0`):
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and
`algorithm_type="dpmsolver++`.
algorithm_type (`str`, default `dpmsolver++`):
the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the
algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in
https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided
sampling (e.g. stable-diffusion).
solver_type (`str`, default `midpoint`):
the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects
the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are
slightly better, so we recommend to use the `midpoint` type.
lower_order_final (`bool`, default `True`):
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically
find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co./papers/2305.08891) for more information.
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
the `dtype` used for params and computation.
"""
_compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers]
dtype: jnp.dtype
@property
def has_state(self):
return True
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[jnp.ndarray] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "dpmsolver++",
solver_type: str = "midpoint",
lower_order_final: bool = True,
timestep_spacing: str = "linspace",
dtype: jnp.dtype = jnp.float32,
):
self.dtype = dtype
def create_state(self, common: Optional[CommonSchedulerState] = None) -> DPMSolverMultistepSchedulerState:
if common is None:
common = CommonSchedulerState.create(self)
# Currently we only support VP-type noise schedule
alpha_t = jnp.sqrt(common.alphas_cumprod)
sigma_t = jnp.sqrt(1 - common.alphas_cumprod)
lambda_t = jnp.log(alpha_t) - jnp.log(sigma_t)
# settings for DPM-Solver
if self.config.algorithm_type not in ["dpmsolver", "dpmsolver++"]:
raise NotImplementedError(f"{self.config.algorithm_type} does is not implemented for {self.__class__}")
if self.config.solver_type not in ["midpoint", "heun"]:
raise NotImplementedError(f"{self.config.solver_type} does is not implemented for {self.__class__}")
# standard deviation of the initial noise distribution
init_noise_sigma = jnp.array(1.0, dtype=self.dtype)
timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]
return DPMSolverMultistepSchedulerState.create(
common=common,
alpha_t=alpha_t,
sigma_t=sigma_t,
lambda_t=lambda_t,
init_noise_sigma=init_noise_sigma,
timesteps=timesteps,
)
def set_timesteps(
self, state: DPMSolverMultistepSchedulerState, num_inference_steps: int, shape: Tuple
) -> DPMSolverMultistepSchedulerState:
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
state (`DPMSolverMultistepSchedulerState`):
the `FlaxDPMSolverMultistepScheduler` state data class instance.
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
shape (`Tuple`):
the shape of the samples to be generated.
"""
last_timestep = self.config.num_train_timesteps
if self.config.timestep_spacing == "linspace":
timesteps = (
jnp.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].astype(jnp.int32)
)
elif self.config.timestep_spacing == "leading":
step_ratio = last_timestep // (num_inference_steps + 1)
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (
(jnp.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(jnp.int32)
)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = jnp.arange(last_timestep, 0, -step_ratio).round().copy().astype(jnp.int32)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
# initial running values
model_outputs = jnp.zeros((self.config.solver_order,) + shape, dtype=self.dtype)
lower_order_nums = jnp.int32(0)
prev_timestep = jnp.int32(-1)
cur_sample = jnp.zeros(shape, dtype=self.dtype)
return state.replace(
num_inference_steps=num_inference_steps,
timesteps=timesteps,
model_outputs=model_outputs,
lower_order_nums=lower_order_nums,
prev_timestep=prev_timestep,
cur_sample=cur_sample,
)
def convert_model_output(
self,
state: DPMSolverMultistepSchedulerState,
model_output: jnp.ndarray,
timestep: int,
sample: jnp.ndarray,
) -> jnp.ndarray:
"""
Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs.
DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to
discretize an integral of the data prediction model. So we need to first convert the model output to the
corresponding type to match the algorithm.
Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or
DPM-Solver++ for both noise prediction model and data prediction model.
Args:
model_output (`jnp.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
Returns:
`jnp.ndarray`: the converted model output.
"""
# DPM-Solver++ needs to solve an integral of the data prediction model.
if self.config.algorithm_type == "dpmsolver++":
if self.config.prediction_type == "epsilon":
alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
x0_pred = (sample - sigma_t * model_output) / alpha_t
elif self.config.prediction_type == "sample":
x0_pred = model_output
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
x0_pred = alpha_t * sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
" or `v_prediction` for the FlaxDPMSolverMultistepScheduler."
)
if self.config.thresholding:
# Dynamic thresholding in https://arxiv.org/abs/2205.11487
dynamic_max_val = jnp.percentile(
jnp.abs(x0_pred), self.config.dynamic_thresholding_ratio, axis=tuple(range(1, x0_pred.ndim))
)
dynamic_max_val = jnp.maximum(
dynamic_max_val, self.config.sample_max_value * jnp.ones_like(dynamic_max_val)
)
x0_pred = jnp.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
return x0_pred
# DPM-Solver needs to solve an integral of the noise prediction model.
elif self.config.algorithm_type == "dpmsolver":
if self.config.prediction_type == "epsilon":
return model_output
elif self.config.prediction_type == "sample":
alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
epsilon = (sample - alpha_t * model_output) / sigma_t
return epsilon
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
epsilon = alpha_t * model_output + sigma_t * sample
return epsilon
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
" or `v_prediction` for the FlaxDPMSolverMultistepScheduler."
)
def dpm_solver_first_order_update(
self,
state: DPMSolverMultistepSchedulerState,
model_output: jnp.ndarray,
timestep: int,
prev_timestep: int,
sample: jnp.ndarray,
) -> jnp.ndarray:
"""
One step for the first-order DPM-Solver (equivalent to DDIM).
See https://arxiv.org/abs/2206.00927 for the detailed derivation.
Args:
model_output (`jnp.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
Returns:
`jnp.ndarray`: the sample tensor at the previous timestep.
"""
t, s0 = prev_timestep, timestep
m0 = model_output
lambda_t, lambda_s = state.lambda_t[t], state.lambda_t[s0]
alpha_t, alpha_s = state.alpha_t[t], state.alpha_t[s0]
sigma_t, sigma_s = state.sigma_t[t], state.sigma_t[s0]
h = lambda_t - lambda_s
if self.config.algorithm_type == "dpmsolver++":
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * m0
elif self.config.algorithm_type == "dpmsolver":
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * m0
return x_t
def multistep_dpm_solver_second_order_update(
self,
state: DPMSolverMultistepSchedulerState,
model_output_list: jnp.ndarray,
timestep_list: List[int],
prev_timestep: int,
sample: jnp.ndarray,
) -> jnp.ndarray:
"""
One step for the second-order multistep DPM-Solver.
Args:
model_output_list (`List[jnp.ndarray]`):
direct outputs from learned diffusion model at current and latter timesteps.
timestep (`int`): current and latter discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
Returns:
`jnp.ndarray`: the sample tensor at the previous timestep.
"""
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
m0, m1 = model_output_list[-1], model_output_list[-2]
lambda_t, lambda_s0, lambda_s1 = state.lambda_t[t], state.lambda_t[s0], state.lambda_t[s1]
alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0]
sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0]
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2211.01095 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (jnp.exp(-h) - 1.0)) * D0
- 0.5 * (alpha_t * (jnp.exp(-h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (jnp.exp(-h) - 1.0)) * D0
+ (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(alpha_t / alpha_s0) * sample
- (sigma_t * (jnp.exp(h) - 1.0)) * D0
- 0.5 * (sigma_t * (jnp.exp(h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(alpha_t / alpha_s0) * sample
- (sigma_t * (jnp.exp(h) - 1.0)) * D0
- (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1
)
return x_t
def multistep_dpm_solver_third_order_update(
self,
state: DPMSolverMultistepSchedulerState,
model_output_list: jnp.ndarray,
timestep_list: List[int],
prev_timestep: int,
sample: jnp.ndarray,
) -> jnp.ndarray:
"""
One step for the third-order multistep DPM-Solver.
Args:
model_output_list (`List[jnp.ndarray]`):
direct outputs from learned diffusion model at current and latter timesteps.
timestep (`int`): current and latter discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
Returns:
`jnp.ndarray`: the sample tensor at the previous timestep.
"""
t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
state.lambda_t[t],
state.lambda_t[s0],
state.lambda_t[s1],
state.lambda_t[s2],
)
alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0]
sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0]
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
r0, r1 = h_0 / h, h_1 / h
D0 = m0
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (jnp.exp(-h) - 1.0)) * D0
+ (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1
- (alpha_t * ((jnp.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
x_t = (
(alpha_t / alpha_s0) * sample
- (sigma_t * (jnp.exp(h) - 1.0)) * D0
- (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1
- (sigma_t * ((jnp.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
)
return x_t
def step(
self,
state: DPMSolverMultistepSchedulerState,
model_output: jnp.ndarray,
timestep: int,
sample: jnp.ndarray,
return_dict: bool = True,
) -> Union[FlaxDPMSolverMultistepSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by DPM-Solver. Core function to propagate the diffusion process
from the learned model outputs (most often the predicted noise).
Args:
state (`DPMSolverMultistepSchedulerState`):
the `FlaxDPMSolverMultistepScheduler` state data class instance.
model_output (`jnp.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than FlaxDPMSolverMultistepSchedulerOutput class
Returns:
[`FlaxDPMSolverMultistepSchedulerOutput`] or `tuple`: [`FlaxDPMSolverMultistepSchedulerOutput`] if
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if state.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
(step_index,) = jnp.where(state.timesteps == timestep, size=1)
step_index = step_index[0]
prev_timestep = jax.lax.select(step_index == len(state.timesteps) - 1, 0, state.timesteps[step_index + 1])
model_output = self.convert_model_output(state, model_output, timestep, sample)
model_outputs_new = jnp.roll(state.model_outputs, -1, axis=0)
model_outputs_new = model_outputs_new.at[-1].set(model_output)
state = state.replace(
model_outputs=model_outputs_new,
prev_timestep=prev_timestep,
cur_sample=sample,
)
def step_1(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
return self.dpm_solver_first_order_update(
state,
state.model_outputs[-1],
state.timesteps[step_index],
state.prev_timestep,
state.cur_sample,
)
def step_23(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
def step_2(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
timestep_list = jnp.array([state.timesteps[step_index - 1], state.timesteps[step_index]])
return self.multistep_dpm_solver_second_order_update(
state,
state.model_outputs,
timestep_list,
state.prev_timestep,
state.cur_sample,
)
def step_3(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
timestep_list = jnp.array(
[
state.timesteps[step_index - 2],
state.timesteps[step_index - 1],
state.timesteps[step_index],
]
)
return self.multistep_dpm_solver_third_order_update(
state,
state.model_outputs,
timestep_list,
state.prev_timestep,
state.cur_sample,
)
step_2_output = step_2(state)
step_3_output = step_3(state)
if self.config.solver_order == 2:
return step_2_output
elif self.config.lower_order_final and len(state.timesteps) < 15:
return jax.lax.select(
state.lower_order_nums < 2,
step_2_output,
jax.lax.select(
step_index == len(state.timesteps) - 2,
step_2_output,
step_3_output,
),
)
else:
return jax.lax.select(
state.lower_order_nums < 2,
step_2_output,
step_3_output,
)
step_1_output = step_1(state)
step_23_output = step_23(state)
if self.config.solver_order == 1:
prev_sample = step_1_output
elif self.config.lower_order_final and len(state.timesteps) < 15:
prev_sample = jax.lax.select(
state.lower_order_nums < 1,
step_1_output,
jax.lax.select(
step_index == len(state.timesteps) - 1,
step_1_output,
step_23_output,
),
)
else:
prev_sample = jax.lax.select(
state.lower_order_nums < 1,
step_1_output,
step_23_output,
)
state = state.replace(
lower_order_nums=jnp.minimum(state.lower_order_nums + 1, self.config.solver_order),
)
if not return_dict:
return (prev_sample, state)
return FlaxDPMSolverMultistepSchedulerOutput(prev_sample=prev_sample, state=state)
def scale_model_input(
self, state: DPMSolverMultistepSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
) -> jnp.ndarray:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
state (`DPMSolverMultistepSchedulerState`):
the `FlaxDPMSolverMultistepScheduler` state data class instance.
sample (`jnp.ndarray`): input sample
timestep (`int`, optional): current timestep
Returns:
`jnp.ndarray`: scaled input sample
"""
return sample
def add_noise(
self,
state: DPMSolverMultistepSchedulerState,
original_samples: jnp.ndarray,
noise: jnp.ndarray,
timesteps: jnp.ndarray,
) -> jnp.ndarray:
return add_noise_common(state.common, original_samples, noise, timesteps)
def __len__(self):
return self.config.num_train_timesteps
|