Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,955 Bytes
62c110b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Copyright (c) 2022 Dominic Rampas MIT License
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union
import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.autoencoders.vae import DecoderOutput, VectorQuantizer
from ...models.modeling_utils import ModelMixin
from ...models.vq_model import VQEncoderOutput
from ...utils.accelerate_utils import apply_forward_hook
class MixingResidualBlock(nn.Module):
"""
Residual block with mixing used by Paella's VQ-VAE.
"""
def __init__(self, inp_channels, embed_dim):
super().__init__()
# depthwise
self.norm1 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-6)
self.depthwise = nn.Sequential(
nn.ReplicationPad2d(1), nn.Conv2d(inp_channels, inp_channels, kernel_size=3, groups=inp_channels)
)
# channelwise
self.norm2 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-6)
self.channelwise = nn.Sequential(
nn.Linear(inp_channels, embed_dim), nn.GELU(), nn.Linear(embed_dim, inp_channels)
)
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
def forward(self, x):
mods = self.gammas
x_temp = self.norm1(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[0]) + mods[1]
x = x + self.depthwise(x_temp) * mods[2]
x_temp = self.norm2(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[3]) + mods[4]
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
return x
class PaellaVQModel(ModelMixin, ConfigMixin):
r"""VQ-VAE model from Paella model.
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
implements for all the model (such as downloading or saving, etc.)
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
up_down_scale_factor (int, *optional*, defaults to 2): Up and Downscale factor of the input image.
levels (int, *optional*, defaults to 2): Number of levels in the model.
bottleneck_blocks (int, *optional*, defaults to 12): Number of bottleneck blocks in the model.
embed_dim (int, *optional*, defaults to 384): Number of hidden channels in the model.
latent_channels (int, *optional*, defaults to 4): Number of latent channels in the VQ-VAE model.
num_vq_embeddings (int, *optional*, defaults to 8192): Number of codebook vectors in the VQ-VAE.
scale_factor (float, *optional*, defaults to 0.3764): Scaling factor of the latent space.
"""
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
up_down_scale_factor: int = 2,
levels: int = 2,
bottleneck_blocks: int = 12,
embed_dim: int = 384,
latent_channels: int = 4,
num_vq_embeddings: int = 8192,
scale_factor: float = 0.3764,
):
super().__init__()
c_levels = [embed_dim // (2**i) for i in reversed(range(levels))]
# Encoder blocks
self.in_block = nn.Sequential(
nn.PixelUnshuffle(up_down_scale_factor),
nn.Conv2d(in_channels * up_down_scale_factor**2, c_levels[0], kernel_size=1),
)
down_blocks = []
for i in range(levels):
if i > 0:
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
block = MixingResidualBlock(c_levels[i], c_levels[i] * 4)
down_blocks.append(block)
down_blocks.append(
nn.Sequential(
nn.Conv2d(c_levels[-1], latent_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(latent_channels), # then normalize them to have mean 0 and std 1
)
)
self.down_blocks = nn.Sequential(*down_blocks)
# Vector Quantizer
self.vquantizer = VectorQuantizer(num_vq_embeddings, vq_embed_dim=latent_channels, legacy=False, beta=0.25)
# Decoder blocks
up_blocks = [nn.Sequential(nn.Conv2d(latent_channels, c_levels[-1], kernel_size=1))]
for i in range(levels):
for j in range(bottleneck_blocks if i == 0 else 1):
block = MixingResidualBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
up_blocks.append(block)
if i < levels - 1:
up_blocks.append(
nn.ConvTranspose2d(
c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, padding=1
)
)
self.up_blocks = nn.Sequential(*up_blocks)
self.out_block = nn.Sequential(
nn.Conv2d(c_levels[0], out_channels * up_down_scale_factor**2, kernel_size=1),
nn.PixelShuffle(up_down_scale_factor),
)
@apply_forward_hook
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput:
h = self.in_block(x)
h = self.down_blocks(h)
if not return_dict:
return (h,)
return VQEncoderOutput(latents=h)
@apply_forward_hook
def decode(
self, h: torch.FloatTensor, force_not_quantize: bool = True, return_dict: bool = True
) -> Union[DecoderOutput, torch.FloatTensor]:
if not force_not_quantize:
quant, _, _ = self.vquantizer(h)
else:
quant = h
x = self.up_blocks(quant)
dec = self.out_block(x)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
r"""
Args:
sample (`torch.FloatTensor`): Input sample.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
h = self.encode(x).latents
dec = self.decode(h).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
|