File size: 16,710 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union

import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict

from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unets.unet_2d_blocks_flax import (
    FlaxCrossAttnDownBlock2D,
    FlaxDownBlock2D,
    FlaxUNetMidBlock2DCrossAttn,
)


@flax.struct.dataclass
class FlaxControlNetOutput(BaseOutput):
    """
    The output of [`FlaxControlNetModel`].

    Args:
        down_block_res_samples (`jnp.ndarray`):
        mid_block_res_sample (`jnp.ndarray`):
    """

    down_block_res_samples: jnp.ndarray
    mid_block_res_sample: jnp.ndarray


class FlaxControlNetConditioningEmbedding(nn.Module):
    conditioning_embedding_channels: int
    block_out_channels: Tuple[int, ...] = (16, 32, 96, 256)
    dtype: jnp.dtype = jnp.float32

    def setup(self) -> None:
        self.conv_in = nn.Conv(
            self.block_out_channels[0],
            kernel_size=(3, 3),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        blocks = []
        for i in range(len(self.block_out_channels) - 1):
            channel_in = self.block_out_channels[i]
            channel_out = self.block_out_channels[i + 1]
            conv1 = nn.Conv(
                channel_in,
                kernel_size=(3, 3),
                padding=((1, 1), (1, 1)),
                dtype=self.dtype,
            )
            blocks.append(conv1)
            conv2 = nn.Conv(
                channel_out,
                kernel_size=(3, 3),
                strides=(2, 2),
                padding=((1, 1), (1, 1)),
                dtype=self.dtype,
            )
            blocks.append(conv2)
        self.blocks = blocks

        self.conv_out = nn.Conv(
            self.conditioning_embedding_channels,
            kernel_size=(3, 3),
            padding=((1, 1), (1, 1)),
            kernel_init=nn.initializers.zeros_init(),
            bias_init=nn.initializers.zeros_init(),
            dtype=self.dtype,
        )

    def __call__(self, conditioning: jnp.ndarray) -> jnp.ndarray:
        embedding = self.conv_in(conditioning)
        embedding = nn.silu(embedding)

        for block in self.blocks:
            embedding = block(embedding)
            embedding = nn.silu(embedding)

        embedding = self.conv_out(embedding)

        return embedding


@flax_register_to_config
class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
    r"""
    A ControlNet model.

    This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it’s generic methods
    implemented for all models (such as downloading or saving).

    This model is also a Flax Linen [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
    subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its
    general usage and behavior.

    Inherent JAX features such as the following are supported:

    - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
    - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
    - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
    - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)

    Parameters:
        sample_size (`int`, *optional*):
            The size of the input sample.
        in_channels (`int`, *optional*, defaults to 4):
            The number of channels in the input sample.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`):
            The tuple of downsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
            The dimension of the attention heads.
        num_attention_heads (`int` or `Tuple[int]`, *optional*):
            The number of attention heads.
        cross_attention_dim (`int`, *optional*, defaults to 768):
            The dimension of the cross attention features.
        dropout (`float`, *optional*, defaults to 0):
            Dropout probability for down, up and bottleneck blocks.
        flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        controlnet_conditioning_channel_order (`str`, *optional*, defaults to `rgb`):
            The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
        conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`):
            The tuple of output channel for each block in the `conditioning_embedding` layer.
    """

    sample_size: int = 32
    in_channels: int = 4
    down_block_types: Tuple[str, ...] = (
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "CrossAttnDownBlock2D",
        "DownBlock2D",
    )
    only_cross_attention: Union[bool, Tuple[bool, ...]] = False
    block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280)
    layers_per_block: int = 2
    attention_head_dim: Union[int, Tuple[int, ...]] = 8
    num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None
    cross_attention_dim: int = 1280
    dropout: float = 0.0
    use_linear_projection: bool = False
    dtype: jnp.dtype = jnp.float32
    flip_sin_to_cos: bool = True
    freq_shift: int = 0
    controlnet_conditioning_channel_order: str = "rgb"
    conditioning_embedding_out_channels: Tuple[int, ...] = (16, 32, 96, 256)

    def init_weights(self, rng: jax.Array) -> FrozenDict:
        # init input tensors
        sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
        sample = jnp.zeros(sample_shape, dtype=jnp.float32)
        timesteps = jnp.ones((1,), dtype=jnp.int32)
        encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)
        controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8)
        controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32)

        params_rng, dropout_rng = jax.random.split(rng)
        rngs = {"params": params_rng, "dropout": dropout_rng}

        return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"]

    def setup(self) -> None:
        block_out_channels = self.block_out_channels
        time_embed_dim = block_out_channels[0] * 4

        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = self.num_attention_heads or self.attention_head_dim

        # input
        self.conv_in = nn.Conv(
            block_out_channels[0],
            kernel_size=(3, 3),
            strides=(1, 1),
            padding=((1, 1), (1, 1)),
            dtype=self.dtype,
        )

        # time
        self.time_proj = FlaxTimesteps(
            block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
        )
        self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)

        self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding(
            conditioning_embedding_channels=block_out_channels[0],
            block_out_channels=self.conditioning_embedding_out_channels,
        )

        only_cross_attention = self.only_cross_attention
        if isinstance(only_cross_attention, bool):
            only_cross_attention = (only_cross_attention,) * len(self.down_block_types)

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(self.down_block_types)

        # down
        down_blocks = []
        controlnet_down_blocks = []

        output_channel = block_out_channels[0]

        controlnet_block = nn.Conv(
            output_channel,
            kernel_size=(1, 1),
            padding="VALID",
            kernel_init=nn.initializers.zeros_init(),
            bias_init=nn.initializers.zeros_init(),
            dtype=self.dtype,
        )
        controlnet_down_blocks.append(controlnet_block)

        for i, down_block_type in enumerate(self.down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            if down_block_type == "CrossAttnDownBlock2D":
                down_block = FlaxCrossAttnDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
                    num_attention_heads=num_attention_heads[i],
                    add_downsample=not is_final_block,
                    use_linear_projection=self.use_linear_projection,
                    only_cross_attention=only_cross_attention[i],
                    dtype=self.dtype,
                )
            else:
                down_block = FlaxDownBlock2D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    dropout=self.dropout,
                    num_layers=self.layers_per_block,
                    add_downsample=not is_final_block,
                    dtype=self.dtype,
                )

            down_blocks.append(down_block)

            for _ in range(self.layers_per_block):
                controlnet_block = nn.Conv(
                    output_channel,
                    kernel_size=(1, 1),
                    padding="VALID",
                    kernel_init=nn.initializers.zeros_init(),
                    bias_init=nn.initializers.zeros_init(),
                    dtype=self.dtype,
                )
                controlnet_down_blocks.append(controlnet_block)

            if not is_final_block:
                controlnet_block = nn.Conv(
                    output_channel,
                    kernel_size=(1, 1),
                    padding="VALID",
                    kernel_init=nn.initializers.zeros_init(),
                    bias_init=nn.initializers.zeros_init(),
                    dtype=self.dtype,
                )
                controlnet_down_blocks.append(controlnet_block)

        self.down_blocks = down_blocks
        self.controlnet_down_blocks = controlnet_down_blocks

        # mid
        mid_block_channel = block_out_channels[-1]
        self.mid_block = FlaxUNetMidBlock2DCrossAttn(
            in_channels=mid_block_channel,
            dropout=self.dropout,
            num_attention_heads=num_attention_heads[-1],
            use_linear_projection=self.use_linear_projection,
            dtype=self.dtype,
        )

        self.controlnet_mid_block = nn.Conv(
            mid_block_channel,
            kernel_size=(1, 1),
            padding="VALID",
            kernel_init=nn.initializers.zeros_init(),
            bias_init=nn.initializers.zeros_init(),
            dtype=self.dtype,
        )

    def __call__(
        self,
        sample: jnp.ndarray,
        timesteps: Union[jnp.ndarray, float, int],
        encoder_hidden_states: jnp.ndarray,
        controlnet_cond: jnp.ndarray,
        conditioning_scale: float = 1.0,
        return_dict: bool = True,
        train: bool = False,
    ) -> Union[FlaxControlNetOutput, Tuple[Tuple[jnp.ndarray, ...], jnp.ndarray]]:
        r"""
        Args:
            sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
            timestep (`jnp.ndarray` or `float` or `int`): timesteps
            encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
            controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor
            conditioning_scale (`float`, *optional*, defaults to `1.0`): the scale factor for controlnet outputs
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of
                a plain tuple.
            train (`bool`, *optional*, defaults to `False`):
                Use deterministic functions and disable dropout when not training.

        Returns:
            [`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
                [`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise
                a `tuple`. When returning a tuple, the first element is the sample tensor.
        """
        channel_order = self.controlnet_conditioning_channel_order
        if channel_order == "bgr":
            controlnet_cond = jnp.flip(controlnet_cond, axis=1)

        # 1. time
        if not isinstance(timesteps, jnp.ndarray):
            timesteps = jnp.array([timesteps], dtype=jnp.int32)
        elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
            timesteps = timesteps.astype(dtype=jnp.float32)
            timesteps = jnp.expand_dims(timesteps, 0)

        t_emb = self.time_proj(timesteps)
        t_emb = self.time_embedding(t_emb)

        # 2. pre-process
        sample = jnp.transpose(sample, (0, 2, 3, 1))
        sample = self.conv_in(sample)

        controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1))
        controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
        sample += controlnet_cond

        # 3. down
        down_block_res_samples = (sample,)
        for down_block in self.down_blocks:
            if isinstance(down_block, FlaxCrossAttnDownBlock2D):
                sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
            else:
                sample, res_samples = down_block(sample, t_emb, deterministic=not train)
            down_block_res_samples += res_samples

        # 4. mid
        sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)

        # 5. contronet blocks
        controlnet_down_block_res_samples = ()
        for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
            down_block_res_sample = controlnet_block(down_block_res_sample)
            controlnet_down_block_res_samples += (down_block_res_sample,)

        down_block_res_samples = controlnet_down_block_res_samples

        mid_block_res_sample = self.controlnet_mid_block(sample)

        # 6. scaling
        down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
        mid_block_res_sample *= conditioning_scale

        if not return_dict:
            return (down_block_res_samples, mid_block_res_sample)

        return FlaxControlNetOutput(
            down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
        )