File size: 10,974 Bytes
9f954a0
15874c5
8de4d6e
028ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de4d6e
 
028ae97
15874c5
028ae97
8de4d6e
 
 
 
 
 
028ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de4d6e
 
 
 
028ae97
 
8de4d6e
028ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de4d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
028ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
8de4d6e
028ae97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de4d6e
028ae97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
print(os.listdir("InstantX/InstantIR"))
import torch
import random
import numpy as np
import gradio as gr
from PIL import Image
from torchvision import transforms

from diffusers import (
    DDPMScheduler,
    StableDiffusionXLPipeline
)
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
from diffusers.utils import convert_unet_state_dict_to_peft
from peft import LoraConfig, set_peft_model_state_dict
from transformers import (
    AutoImageProcessor, AutoModel
)

from module.ip_adapter.utils import init_ip_adapter_in_unet
from module.ip_adapter.resampler import Resampler
from module.aggregator import Aggregator
from pipelines.sdxl_instantir import InstantIRPipeline, LCM_LORA_MODULES, PREVIEWER_LORA_MODULES


transform = transforms.Compose([
    transforms.Resize(1024, interpolation=transforms.InterpolationMode.BILINEAR),
    transforms.CenterCrop(1024),
])

device = "cuda" if torch.cuda.is_available() else "cpu"
sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
instantir_repo_id = "InstantX/InstantIR"
dinov2_repo_id = "facebook/dinov2-large"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

print("Loading vision encoder...")
image_encoder = AutoModel.from_pretrained(dinov2_repo_id, torch_dtype=torch_dtype)
image_processor = AutoImageProcessor.from_pretrained(dinov2_repo_id)

print("Loading SDXL...")
pipe = StableDiffusionXLPipeline.from_pretrained(
    sdxl_repo_id,
    torch_dtype=torch.float16,
)
unet = pipe.unet

print("Initializing Aggregator...")
aggregator = Aggregator.from_unet(unet, load_weights_from_unet=False)

print("Loading LQ-Adapter...")
image_proj_model = Resampler(
    dim=1280,
    depth=4,
    dim_head=64,
    heads=20,
    num_queries=64,
    embedding_dim=image_encoder.config.hidden_size,
    output_dim=unet.config.cross_attention_dim,
    ff_mult=4
)
init_ip_adapter_in_unet(
    unet,
    image_proj_model,
    "InstantX/InstantIR/adapter.pt",
    adapter_tokens=64,
)
print("Initializing InstantIR...")
pipe = InstantIRPipeline(
        pipe.vae, pipe.text_encoder, pipe.text_encoder_2, pipe.tokenizer, pipe.tokenizer_2,
        unet, aggregator, pipe.scheduler, feature_extractor=image_processor, image_encoder=image_encoder,
)

# Add Previewer LoRA.
lora_state_dict, alpha_dict = StableDiffusionXLPipeline.lora_state_dict(
    "InstantX/InstantIR/previewer_lora_weights.bin",
    # weight_name="previewer_lora_weights.bin",

)
unet_state_dict = {
    f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")
}
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
lora_state_dict = dict()
for k, v in unet_state_dict.items():
    if "ip" in k:
        k = k.replace("attn2", "attn2.processor")
        lora_state_dict[k] = v
    else:
        lora_state_dict[k] = v
if alpha_dict:
    lora_alpha = next(iter(alpha_dict.values()))
else:
    lora_alpha = 1
print(f"use lora alpha {lora_alpha}")
lora_config = LoraConfig(
    r=64,
    target_modules=PREVIEWER_LORA_MODULES,
    lora_alpha=lora_alpha,
    lora_dropout=0.0,
)

# Add LCM LoRA.
lora_state_dict, alpha_dict = StableDiffusionXLPipeline.lora_state_dict(
    "latent-consistency/lcm-lora-sdxl"
)
unet_state_dict = {
    f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")
}
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
if alpha_dict:
    lora_alpha = next(iter(alpha_dict.values()))
else:
    lora_alpha = 1
print(f"use lora alpha {lora_alpha}")
lora_config = LoraConfig(
    r=64,
    target_modules=LCM_LORA_MODULES,
    lora_alpha=lora_alpha,
    lora_dropout=0.0,
)

unet.add_adapter(lora_config, "lcm")
incompatible_keys = set_peft_model_state_dict(unet, unet_state_dict, adapter_name="lcm")
if incompatible_keys is not None:
    # check only for unexpected keys
    unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
    missing_keys = getattr(incompatible_keys, "missing_keys", None)
    if unexpected_keys:
        raise ValueError(
            f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
            f" {unexpected_keys}. "
        )

unet.disable_adapters()
pipe.scheduler = DDPMScheduler.from_pretrained(
    sdxl_repo_id,
    subfolder="scheduler"
)
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
# Load weights.
print("Loading checkpoint...")
aggregator_state_dict = torch.load(
    "InstantX/InstantIR/aggregator.pt",
    map_location="cpu"
)
aggregator.load_state_dict(aggregator_state_dict, strict=True)
aggregator.to(dtype=torch.float16)
unet.to(dtype=torch.float16)
pipe=pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def unpack_pipe_out(preview_row, index):
    return preview_row[index][0]

def dynamic_preview_slider(sampling_steps):
    print(sampling_steps)
    return gr.Slider(label="Restoration Previews", value=sampling_steps-1, minimum=0, maximum=sampling_steps-1, step=1)

def dynamic_guidance_slider(sampling_steps):
    return gr.Slider(label="Start Free Rendering", value=sampling_steps, minimum=0, maximum=sampling_steps, step=1)

def show_final_preview(preview_row):
    return preview_row[-1][0]

# @spaces.GPU #[uncomment to use ZeroGPU]
def instantir_restore(lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0, creative_restoration=False, seed=3407):
    if creative_restoration:
        if "lcm" not in pipe.unet.active_adapters():
            pipe.unet.set_adapter('lcm')
    else:
        if "previewer" not in pipe.unet.active_adapters():
            pipe.unet.set_adapter('previewer')

    if isinstance(guidance_end, int):
        guidance_end = guidance_end / steps
    with torch.no_grad(): lq = [transform(lq)]
    generator = torch.Generator(device=device).manual_seed(seed)

    out = pipe(
        prompt=[prompt]*len(lq),
        image=lq,
        ip_adapter_image=[lq],
        num_inference_steps=steps,
        generator=generator,
        controlnet_conditioning_scale=1.0,
        # negative_original_size=(256,256),
        # negative_target_size=(1024,1024),
        negative_prompt=[""]*len(lq),
        guidance_scale=cfg_scale,
        control_guidance_end=guidance_end,
        # control_guidance_start=0.5,
        previewer_scheduler=lcm_scheduler,
        return_dict=False,
        save_preview_row=True,
        # reference_latent = reference_latents,
        # output_type='pt'
    )
    for i, preview_img in enumerate(out[1]):
        preview_img.append(f"preview_{i}")
    return out[0][0], out[1]

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown(
    """
    # InstantIR: Blind Image Restoration with Instant Generative Reference.

    ### **Official 🤗 Gradio demo of [InstantIR](https://arxiv.org/abs/2410.06551).**
    ### **InstantIR can not only help you restore your broken image, but also capable of imaginative re-creation following your text prompts. See advance usage for more details!**
    ## Basic usage: revitalize your image
    1. Upload an image you want to restore;
    2. Optionally, tune the `Steps` `CFG Scale` parameters. Typically higher steps lead to better results, but less than 50 is recommended for efficiency;
    3. Click `InstantIR magic!`.
    """)
    with gr.Row():
        lq_img = gr.Image(label="Low-quality image", type="pil")
        with gr.Column(elem_id="col-container"):
            with gr.Row():
                steps = gr.Number(label="Steps", value=20, step=1)
                cfg_scale = gr.Number(label="CFG Scale", value=7.0, step=0.1)
                seed = gr.Number(label="Seed", value=42, step=1)
            # guidance_start = gr.Slider(label="Guidance Start", value=1.0, minimum=0.0, maximum=1.0, step=0.05)
            guidance_end = gr.Slider(label="Start Free Rendering", value=20, minimum=0, maximum=20, step=1)
            prompt = gr.Textbox(
                label="Restoration prompts (Optional)", show_label=False,
                placeholder="Restoration prompts (Optional)", value='',
                # container=False,
            )
            mode = gr.Checkbox(label="Creative Restoration", value=False)
    # with gr.Accordion("Advanced Settings", open=False):
    with gr.Row():
        with gr.Row():
            restore_btn = gr.Button("InstantIR magic!")
            clear_btn = gr.ClearButton()
        index = gr.Slider(label="Restoration Previews", value=19, minimum=0, maximum=19, step=1)
    with gr.Row():
        output = gr.Image(label="InstantIR restored", type="pil")
        preview = gr.Image(label="Preview", type="pil")
    # gr.Examples(
    #     examples = examples,
    #     inputs = [prompt]
    # )
    # gr.on(
    #     triggers=[restore_btn.click, prompt.submit],
    #     fn = infer,
    #     inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
    #     outputs = [result, seed]
    # )
    pipe_out = gr.Gallery(visible=False)
    clear_btn.add([lq_img, output, preview])
    restore_btn.click(instantir_restore, inputs=[lq_img, prompt, steps, cfg_scale, guidance_end, mode, seed], outputs=[output, pipe_out], api_name="InstantIR")
    steps.change(dynamic_guidance_slider, inputs=steps, outputs=guidance_end)
    output.change(dynamic_preview_slider, inputs=steps, outputs=index)
    index.release(unpack_pipe_out, inputs=[pipe_out, index], outputs=preview)
    output.change(show_final_preview, inputs=pipe_out, outputs=preview)
    gr.Markdown(
    """
    ## Advance usage:
    ### Browse restoration variants:
    1. After InstantIR processing, drag the `Restoration Previews` slider to explore other in-progress versions;
    2. If you like one of them, set the `Start Free Rendering` slider to the same value to get a more refined result.
    ### Creative restoration:
    1. Check the `Creative Restoration` checkbox;
    2. Input your text prompts in the `Restoration prompts` textbox;
    3. Set `Start Free Rendering` slider to a medium value (around half of the `steps`) to provide adequate room for InstantIR creation.
    
    ## Examples
    Here are some examplar usage of InstantIR:
    """)
    # examples = gr.Gallery(label="Examples")

    gr.Markdown(
    """
    ## Citation
    If InstantIR is helpful to your work, please cite our paper via:

    ```
    @article{huang2024instantir,
        title={InstantIR: Blind Image Restoration with Instant Generative Reference},
        author={Huang, Jen-Yuan and Wang, Haofan and Wang, Qixun and Bai, Xu and Ai, Hao and Xing, Peng and Huang, Jen-Tse},
        journal={arXiv preprint arXiv:2410.06551},
        year={2024}
    }
    ```
    """)

demo.queue().launch(debug=True)