File size: 9,901 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Copy from diffusers.models.attention.py

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional

import torch
import torch.nn.functional as F
from torch import nn

from diffusers.utils import deprecate, logging
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm

from module.min_sdxl import LoRACompatibleLinear, LoRALinearLayer


logger = logging.get_logger(__name__)

def create_custom_forward(module):
    def custom_forward(*inputs):
        return module(*inputs)

    return custom_forward

def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True):

    if do_ckpt:
        hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
        hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint(
            create_custom_forward(attn), hidden_states, encoder_hidden_states, adapter_hidden_states, use_reentrant=False
        )
    else:
        hidden_states = resnet(hidden_states, temb)
        hidden_states, extracted_kv = attn(
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            adapter_hidden_states=adapter_hidden_states,
        )
    return hidden_states, extracted_kv


def init_lora_in_attn(attn_module, rank: int = 4, is_kvcopy=False):
    # Set the `lora_layer` attribute of the attention-related matrices.

    attn_module.to_k.set_lora_layer(
        LoRALinearLayer(
            in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=rank
        )
    )
    attn_module.to_v.set_lora_layer(
        LoRALinearLayer(
            in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=rank
        )
    )

    if not is_kvcopy:
        attn_module.to_q.set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=rank
            )
        )

        attn_module.to_out[0].set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_out[0].in_features,
                out_features=attn_module.to_out[0].out_features,
                rank=rank,
            )
        )

def drop_kvs(encoder_kvs, drop_chance):
    for layer in encoder_kvs:
        len_tokens = encoder_kvs[layer].self_attention.k.shape[1]
        idx_to_keep = (torch.rand(len_tokens) > drop_chance)

        encoder_kvs[layer].self_attention.k = encoder_kvs[layer].self_attention.k[:, idx_to_keep]
        encoder_kvs[layer].self_attention.v = encoder_kvs[layer].self_attention.v[:, idx_to_keep]

    return encoder_kvs

def clone_kvs(encoder_kvs):
    cloned_kvs = {}
    for layer in encoder_kvs:
        sa_cpy = KVCache(k=encoder_kvs[layer].self_attention.k.clone(), 
                         v=encoder_kvs[layer].self_attention.v.clone())

        ca_cpy = KVCache(k=encoder_kvs[layer].cross_attention.k.clone(),
                         v=encoder_kvs[layer].cross_attention.v.clone())

        cloned_layer_cache = AttentionCache(self_attention=sa_cpy, cross_attention=ca_cpy)
        
        cloned_kvs[layer] = cloned_layer_cache

    return cloned_kvs


class KVCache(object):
    def __init__(self, k, v):
        self.k = k
        self.v = v

class AttentionCache(object):
    def __init__(self, self_attention: KVCache, cross_attention: KVCache):
        self.self_attention = self_attention
        self.cross_attention = cross_attention

class KVCopy(nn.Module):
    def __init__(
        self, inner_dim, cross_attention_dim=None,
    ):
        super(KVCopy, self).__init__()

        in_dim = cross_attention_dim or inner_dim

        self.to_k = LoRACompatibleLinear(in_dim, inner_dim, bias=False)
        self.to_v = LoRACompatibleLinear(in_dim, inner_dim, bias=False)

    def forward(self, hidden_states):

        k = self.to_k(hidden_states)
        v = self.to_v(hidden_states)

        return KVCache(k=k, v=v)

    def init_kv_copy(self, source_attn):
        with torch.no_grad():
            self.to_k.weight.copy_(source_attn.to_k.weight)
            self.to_v.weight.copy_(source_attn.to_v.weight)


class FeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
    """

    def __init__(
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
        final_dropout: bool = False,
        inner_dim=None,
        bias: bool = True,
    ):
        super().__init__()
        if inner_dim is None:
            inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim

        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim, bias=bias)
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim, bias=bias)
        elif activation_fn == "geglu-approximate":
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)

        self.net = nn.ModuleList([])
        # project in
        self.net.append(act_fn)
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))

    def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states


def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
    return ff_output


@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x