# Ref: https://huggingface.co./spaces/multimodalart/cosxl import gradio as gr from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler import spaces import torch import os from huggingface_hub import hf_hub_download model_id = "aipicasso/emi-2" token=os.environ["TOKEN"] scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token) pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token) negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors") state_dict = load_file(negative_ti_file) pipe.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) pipe.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipe_normal.to("cuda") @spaces.GPU def run_normal(prompt, negative_prompt="", guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)): return pipe_normal(prompt, negative_prompt="unaestheticXLv31"+negative_prompt, guidance_scale=guidance_scale, num_inference_steps=20).images[0] css = ''' .gradio-container{ max-width: 768px !important; margin: 0 auto; } ''' normal_examples = ["1girl, face, brown bob short hair, brown eyes, looking at viewer"] with gr.Blocks(css=css) as demo: gr.Markdown('''# Emi 2 Official demo for Emi 2 ''') with gr.Group(): with gr.Row(): prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: 1girl, face, brown bob short hair, brown eyes, looking at viewer") button_normal = gr.Button("Generate", min_width=120) output_normal = gr.Image(label="Your result image", interactive=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt_normal = gr.Textbox(label="Negative Prompt") guidance_scale_normal = gr.Number(label="Guidance Scale", value=7) gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True) gr.on( triggers=[ button_normal.click, prompt_normal.submit ], fn=run_normal, inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal], outputs=[output_normal], ) if __name__ == "__main__": demo.launch(share=True)