Spaces:
Runtime error
Runtime error
# Ref: https://huggingface.co./spaces/multimodalart/cosxl | |
import gradio as gr | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
import spaces | |
import torch | |
import os | |
model_id = "aipicasso/emi-2" | |
token=os.environ["TOKEN"] | |
scheduler = EulerAncestralDiscreteScheduler.from_pretraind(model_id,token=token) | |
pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token) | |
pipe_normal.to("cuda") | |
def run_normal(prompt, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)): | |
return pipe_normal(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=20).images[0] | |
normal_examples = ["portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "backlit photography of a dog", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece"] | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown('''# Emi 2 | |
Official demo for Emi 2 | |
''') | |
with gr.Group(): | |
with gr.Row(): | |
prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog") | |
button_normal = gr.Button("Generate", min_width=120) | |
output_normal = gr.Image(label="Your result image", interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_normal = gr.Textbox(label="Negative Prompt") | |
guidance_scale_normal = gr.Number(label="Guidance Scale", value=7) | |
gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True) | |
gr.on( | |
triggers=[ | |
button_normal.click, | |
prompt_normal.submit | |
], | |
fn=run_normal, | |
inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal], | |
outputs=[output_normal], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |