Spaces:
Build error
Build error
IzumiSatoshi
commited on
Commit
·
8cdf719
1
Parent(s):
15bfd1a
Rename Sketch2ImgPipeline.py to pipeline_ddpm_sketch2img.py
Browse files- Sketch2ImgPipeline.py +0 -52
- pipeline_ddpm_sketch2img.py +73 -0
Sketch2ImgPipeline.py
DELETED
@@ -1,52 +0,0 @@
|
|
1 |
-
import torchvision
|
2 |
-
import torch
|
3 |
-
from tqdm import tqdm
|
4 |
-
from diffusers.pipeline_utils import DiffusionPipeline
|
5 |
-
|
6 |
-
|
7 |
-
class Sketch2ImgPipeline(DiffusionPipeline):
|
8 |
-
def __init__(self, unet, scheduler):
|
9 |
-
super().__init__()
|
10 |
-
self.register_modules(
|
11 |
-
unet=unet,
|
12 |
-
scheduler=scheduler,
|
13 |
-
)
|
14 |
-
|
15 |
-
@torch.no_grad()
|
16 |
-
def __call__(
|
17 |
-
self,
|
18 |
-
sketches,
|
19 |
-
num_inference_step=10,
|
20 |
-
):
|
21 |
-
# input sketch : numpy array(batch_size, 1, 28, 28), 0~255
|
22 |
-
# return : numpy array(batch_size, 1, 28, 28), -1 ~ 1
|
23 |
-
# TODO: map output to 0 ~ 255
|
24 |
-
|
25 |
-
sketches = torch.from_numpy(sketches).float()
|
26 |
-
sketches = self.normalize(sketches)
|
27 |
-
|
28 |
-
self.scheduler.set_timesteps(num_inference_step, device=self.device)
|
29 |
-
|
30 |
-
sketches = sketches.to(self.device)
|
31 |
-
samples = torch.randn_like(sketches).to(self.device)
|
32 |
-
|
33 |
-
for t in tqdm(self.scheduler.timesteps):
|
34 |
-
x = torch.concat([samples, sketches], dim=1).to(self.device)
|
35 |
-
residuals = self.unet(x, t).sample
|
36 |
-
samples = self.scheduler.step(residuals, t, samples).prev_sample
|
37 |
-
|
38 |
-
# samples = self.denormalize(samples).cpu().int().numpy()
|
39 |
-
samples = samples.cpu().numpy()
|
40 |
-
return samples
|
41 |
-
|
42 |
-
def normalize(self, x):
|
43 |
-
# map x to -1 < x < 1
|
44 |
-
# I'm doing normalization with zero understanding :o
|
45 |
-
x /= 255
|
46 |
-
x = torchvision.transforms.Normalize(0.5, 0.5)(x)
|
47 |
-
return x
|
48 |
-
|
49 |
-
def denormalize(self, x):
|
50 |
-
x = x * 0.5 + 0.5 # map from (-1, 1) back to (0, 1)
|
51 |
-
x = x * 255
|
52 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline_ddpm_sketch2img.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import DiffusionPipeline
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
class DDPMSketch2ImgPipeline(DiffusionPipeline):
|
8 |
+
# TODO: Move transforms to another class
|
9 |
+
|
10 |
+
def __init__(self, unet, scheduler):
|
11 |
+
super().__init__()
|
12 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
13 |
+
|
14 |
+
def __call__(self, sketch, num_inference_step=1000, tqdm_leave=True):
|
15 |
+
# sketch : PIL
|
16 |
+
# returl : PIL
|
17 |
+
|
18 |
+
sketch = transforms.functional.pil_to_tensor(sketch).float()
|
19 |
+
sketch = self.normalize(sketch).to(self.device)
|
20 |
+
sketch = sketch.unsqueeze(0)
|
21 |
+
|
22 |
+
image = self.sample(sketch, num_inference_step, tqdm_leave)
|
23 |
+
|
24 |
+
image = image.squeeze(0)
|
25 |
+
image = self.denormalize(image)
|
26 |
+
image = self.denormalized_tensor_to_pil(image)
|
27 |
+
|
28 |
+
return image
|
29 |
+
|
30 |
+
def sample(self, transformed_sketch, num_inference_step, tqdm_leave=True):
|
31 |
+
assert (
|
32 |
+
len(transformed_sketch.shape) == 4
|
33 |
+
), f"(bs, c, h, w) but {transformed_sketch.shape}"
|
34 |
+
|
35 |
+
# Is this the right place to set timesteps?
|
36 |
+
self.scheduler.set_timesteps(num_inference_step, device=self.device)
|
37 |
+
|
38 |
+
s = transformed_sketch.shape
|
39 |
+
# Assume image's channels == out_channels
|
40 |
+
image = torch.randn((s[0], self.unet.config["out_channels"], s[2], s[3])).to(
|
41 |
+
self.device
|
42 |
+
)
|
43 |
+
|
44 |
+
for t in tqdm(self.scheduler.timesteps, leave=tqdm_leave):
|
45 |
+
model_input = torch.concat([image, transformed_sketch], dim=1).to(
|
46 |
+
self.device
|
47 |
+
)
|
48 |
+
with torch.no_grad():
|
49 |
+
model_output = self.unet(model_input, t).sample
|
50 |
+
image = self.scheduler.step(model_output, t, image).prev_sample
|
51 |
+
|
52 |
+
return image
|
53 |
+
|
54 |
+
def denormalized_tensor_to_pil(self, tensor):
|
55 |
+
assert len(tensor.shape) == 3, f"(c, h, w) but {tensor.shape}"
|
56 |
+
|
57 |
+
tensor = tensor.cpu().clip(0, 255).to(torch.uint8)
|
58 |
+
pil = transforms.functional.to_pil_image(tensor)
|
59 |
+
return pil
|
60 |
+
|
61 |
+
def normalize(self, x):
|
62 |
+
assert x.dtype == torch.float
|
63 |
+
# map x to -1 < x < 1
|
64 |
+
# I'm doing normalization with zero understanding :o
|
65 |
+
x = x / 255.0
|
66 |
+
x = transforms.Normalize([0.5], [0.5])(x)
|
67 |
+
return x
|
68 |
+
|
69 |
+
def denormalize(self, x):
|
70 |
+
assert x.dtype == torch.float
|
71 |
+
x = x * 0.5 + 0.5 # map from (-1, 1) back to (0, 1)
|
72 |
+
x = x * 255.0
|
73 |
+
return x
|