import gradio as gr import numpy as np import random import spaces import torch import time from diffusers import DiffusionPipeline, AutoencoderTiny from diffusers.models.attention_processor import AttnProcessor2_0 from custom_pipeline import FluxWithCFGPipeline torch.backends.cuda.matmul.allow_tf32 = True # Constants MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 DEFAULT_WIDTH = 1024 DEFAULT_HEIGHT = 1024 DEFAULT_INFERENCE_STEPS = 1 # Device and model setup dtype = torch.float16 pipe = FluxWithCFGPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype ) pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) pipe.to("cuda") pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better") pipe.set_adapters(["better"], adapter_weights=[1.0]) pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) pipe.unload_lora_weights() torch.cuda.empty_cache() # Inference function @spaces.GPU(duration=25) def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(int(float(seed))) start_time = time.time() # Only generate the last image in the sequence img = pipe.generate_images( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator ) latency = f"Latency: {(time.time()-start_time):.2f} seconds" return img, seed, latency # Example prompts examples = [ "a tiny astronaut hatching from an egg on the moon", "a cute white cat holding a sign that says hello world", "an anime illustration of Steve Jobs", "Create image of Modern house in minecraft style", "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", ] # --- Gradio UI --- with gr.Blocks() as demo: with gr.Column(elem_id="app-container"): gr.Markdown("# 🎨 FLUX модСль Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ") gr.Markdown("Π“Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅Ρ‚ изобраТСния Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ") gr.Markdown("Π’Π½ΠΈΠΌΠ°Π½ΠΈΠ΅: запросы ΠΊ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π»ΡƒΡ‡ΡˆΠ΅ Π΄Π΅Π»Π°Ρ‚ΡŒ Π½Π° английском языкС (ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Ρ‡ΠΈΠΊΠΎΠΌ). ΠŸΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ° русского языка Π±ΡƒΠ΄Π΅Ρ‚ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½Π° ΠΏΠΎΠ·Π΄Π½Π΅Π΅.") with gr.Row(): with gr.Column(scale=2.5): result = gr.Image(label="Generated Image", show_label=False, interactive=False) with gr.Column(scale=1): prompt = gr.Text( label="Prompt", placeholder="ΠžΠΏΠΈΡˆΠΈΡ‚Π΅ ΠΆΠ΅Π»Π°Π΅ΠΌΠΎΠ΅ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ (Π½Π° английском языкС)...", lines=3, show_label=False, container=False, ) generateBtn = gr.Button("πŸ–ΌοΈ Π‘Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅") enhanceBtn = gr.Button("πŸš€ Π£ΡΠΈΠ»ΠΈΡ‚ΡŒ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅") with gr.Column("Advanced Options"): with gr.Row(): realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False) latency = gr.Text(label="Latency") with gr.Row(): seed = gr.Number(label="Seed", value=42) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH) height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT) num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS) with gr.Row(): gr.Markdown("### 🌟 Inspiration Gallery") with gr.Row(): gr.Examples( examples=examples, fn=generate_image, inputs=[prompt], outputs=[result, seed, latency], cache_examples="lazy" ) enhanceBtn.click( fn=generate_image, inputs=[prompt, seed, width, height], outputs=[result, seed, latency], show_progress="full", queue=False, concurrency_limit=None ) generateBtn.click( fn=generate_image, inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], outputs=[result, seed, latency], show_progress="full", api_name="RealtimeFlux", queue=False ) def update_ui(realtime_enabled): return { prompt: gr.update(interactive=True), generateBtn: gr.update(visible=not realtime_enabled) } realtime.change( fn=update_ui, inputs=[realtime], outputs=[prompt, generateBtn], queue=False, concurrency_limit=None ) def realtime_generation(*args): if args[0]: # If realtime is enabled return next(generate_image(*args[1:])) prompt.submit( fn=generate_image, inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], outputs=[result, seed, latency], show_progress="full", queue=False, concurrency_limit=None ) for component in [prompt, width, height, num_inference_steps]: component.input( fn=realtime_generation, inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps], outputs=[result, seed, latency], show_progress="hidden", trigger_mode="always_last", queue=False, concurrency_limit=None ) # Launch the app demo.launch()