KingNish commited on
Commit
841cc8b
·
verified ·
1 Parent(s): 59efc5a

Update custom_pipeline.py

Browse files
Files changed (1) hide show
  1. custom_pipeline.py +3 -7
custom_pipeline.py CHANGED
@@ -47,10 +47,6 @@ class FluxWithCFGPipeline(FluxPipeline):
47
  Extends the FluxPipeline to yield intermediate images during the denoising process
48
  with progressively increasing resolution for faster generation.
49
  """
50
- def __init__(self, *args, **kwargs):
51
- super().__init__(*args, **kwargs)
52
- self.default_sample_size = 512 # Default sample size from the first pipeline
53
-
54
  @torch.inference_mode()
55
  def generate_images(
56
  self,
@@ -106,7 +102,6 @@ class FluxWithCFGPipeline(FluxPipeline):
106
  max_sequence_length=max_sequence_length,
107
  lora_scale=lora_scale,
108
  )
109
-
110
  # 4. Prepare latent variables
111
  num_channels_latents = self.transformer.config.in_channels // 4
112
  latents, latent_image_ids = self.prepare_latents(
@@ -119,7 +114,6 @@ class FluxWithCFGPipeline(FluxPipeline):
119
  generator,
120
  latents,
121
  )
122
-
123
  # 5. Prepare timesteps
124
  sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
125
  image_seq_len = latents.shape[1]
@@ -156,12 +150,14 @@ class FluxWithCFGPipeline(FluxPipeline):
156
  return_dict=False,
157
  )[0]
158
 
159
- # Yield intermediate result
160
  latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
161
  torch.cuda.empty_cache()
162
 
163
  # Final image
164
  return self._decode_latents_to_image(latents, height, width, output_type)
 
 
165
 
166
  def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
167
  """Decodes the given latents into an image."""
 
47
  Extends the FluxPipeline to yield intermediate images during the denoising process
48
  with progressively increasing resolution for faster generation.
49
  """
 
 
 
 
50
  @torch.inference_mode()
51
  def generate_images(
52
  self,
 
102
  max_sequence_length=max_sequence_length,
103
  lora_scale=lora_scale,
104
  )
 
105
  # 4. Prepare latent variables
106
  num_channels_latents = self.transformer.config.in_channels // 4
107
  latents, latent_image_ids = self.prepare_latents(
 
114
  generator,
115
  latents,
116
  )
 
117
  # 5. Prepare timesteps
118
  sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
119
  image_seq_len = latents.shape[1]
 
150
  return_dict=False,
151
  )[0]
152
 
153
+ # Yield intermediate result
154
  latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
155
  torch.cuda.empty_cache()
156
 
157
  # Final image
158
  return self._decode_latents_to_image(latents, height, width, output_type)
159
+ self.maybe_free_model_hooks()
160
+ torch.cuda.empty_cache()
161
 
162
  def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
163
  """Decodes the given latents into an image."""