import gradio as gr from wmdetection.models import get_watermarks_detection_model from wmdetection.pipelines.predictor import WatermarksPredictor import os, glob model, transforms = get_watermarks_detection_model( 'convnext-tiny', fp16=False, cache_dir='model_files' ) predictor = WatermarksPredictor(model, transforms, 'cuda:0') def predict(image): result = predictor.predict_image(image) return 'watermarked' if result else 'clean' # prints "watermarked" examples = glob.glob(os.path.join('images', 'clean', '*')) examples.extend(glob.glob(os.path.join('images', 'watermark', '*'))) iface = gr.Interface(fn=predict, inputs=[gr.inputs.Image(type="pil")], examples=examples, outputs="text") iface.launch()