Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import pickle
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
@@ -19,7 +20,12 @@ nltk.download('stopwords')
|
|
19 |
|
20 |
model_checkpoint = "marefa-nlp/marefa-mt-en-ar"
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
22 |
-
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint,from_pt=True)
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Load cleaned_word_embeddings
|
25 |
with open("cleaned_word_embeddings.pkl", "rb") as f:
|
|
|
1 |
import gradio as gr
|
2 |
import pickle
|
3 |
+
import zipfile
|
4 |
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
|
|
20 |
|
21 |
model_checkpoint = "marefa-nlp/marefa-mt-en-ar"
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
23 |
+
#model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint,from_pt=True)
|
24 |
+
with zipfile.ZipFile("tf_model.zip", 'r') as zip_ref:
|
25 |
+
zip_ref.extractall("/tfmodel")
|
26 |
+
|
27 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained("tf_model/")
|
28 |
+
|
29 |
|
30 |
# Load cleaned_word_embeddings
|
31 |
with open("cleaned_word_embeddings.pkl", "rb") as f:
|