from transformers import pipeline import gradio as gr from PIL import Image def classify_img(im): im = Image.fromarray(im.astype('uint8'), 'RGB') ans = image_cla(im) labels = {v["label"]: v["score"] for v in ans} return labels def voice2text(audio): text = voice_cla(audio)["text"] return text def text2sentiment(text): sentiment = text_cla(text)[0]["label"] return sentiment def make_block(dem): with dem: gr.Markdown(""" # Ejemplo de `space` multiclassifier: Este `space` contiene los siguientes modelos: - ASR: [Wav2Vec2](https://huggingface.co./facebook/wav2vec2-large-xlsr-53-spanish) - Text Classification: [Robertuito](https://huggingface.co./pysentimiento/robertuito-sentiment-analysis) - Image classifier: [Swin-small-patch4](https://huggingface.co./microsoft/swin-small-patch4-window7-224) Autor del demo: [Gabriel Ichcanziho](https://www.linkedin.com/in/ichcanziho/) Puedes probar un demo de cada uno en las siguientes pestañas: """) with gr.Tabs(): with gr.TabItem("Transcribe audio en español"): with gr.Row(): audio = gr.Audio(source="microphone", type="filepath") transcripcion = gr.Textbox() b1 = gr.Button("Voz a Texto") with gr.TabItem("Análisis de sentimiento en español"): with gr.Row(): texto = gr.Textbox() label = gr.Label() b2 = gr.Button("Texto a Sentimiento") with gr.TabItem("Clasificación de Imágenes"): with gr.Row(): image = gr.Image(label="Carga una imagen aquí") label_image = gr.Label(num_top_classes=5) b3 = gr.Button("Clasifica") b1.click(voice2text, inputs=audio, outputs=transcripcion) b2.click(text2sentiment, inputs=texto, outputs=label) b3.click(classify_img, inputs=image, outputs=label_image) if __name__ == '__main__': image_cla = pipeline("image-classification", model="microsoft/swin-tiny-patch4-window7-224") voice_cla = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-large-xlsr-53-spanish") text_cla = pipeline("text-classification", model="pysentimiento/robertuito-sentiment-analysis") demo = gr.Blocks() make_block(demo) demo.launch()