Spaces:
Running
Running
File size: 24,488 Bytes
0578219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
from flask import Flask, request, jsonify, render_template, url_for
from flask_socketio import SocketIO
import threading
from ultralytics import YOLO
import numpy as np
import cv2
import matplotlib.pyplot as plt
import importlib
from segment_anything import sam_model_registry, SamPredictor
import os
from werkzeug.utils import secure_filename
import logging
import json
import shutil
import sys
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
app = Flask(__name__)
socketio = SocketIO(app)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
class Config:
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
UPLOAD_FOLDER = os.path.join(BASE_DIR, 'static', 'uploads')
SAM_RESULT_FOLDER = os.path.join(BASE_DIR, 'static', 'sam','sam_results')
YOLO_RESULT_FOLDER = os.path.join(BASE_DIR, 'static', 'yolo','yolo_results')
YOLO_TRAIN_IMAGE_FOLDER = os.path.join(BASE_DIR, 'static', 'yolo','dataset_yolo','train','images')
YOLO_TRAIN_LABEL_FOLDER = os.path.join(BASE_DIR, 'static', 'yolo','dataset_yolo','train','labels')
AREA_DATA_FOLDER = os.path.join(BASE_DIR, 'static', 'yolo','area_data')
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
MAX_CONTENT_LENGTH = 16 * 1024 * 1024 # 16MB max file size
SAM_CHECKPOINT = os.path.join(BASE_DIR, 'static', 'sam',"sam_vit_h_4b8939.pth")
SAM_2 = os.path.join(BASE_DIR, 'static', 'sam',"sam2.1_hiera_large.pt")
YOLO_PATH = os.path.join(BASE_DIR, 'static', 'yolo', "model_yolo.pt")
RETRAINED_MODEL_PATH = os.path.join(BASE_DIR, 'static', 'yolo', "model_retrained.pt")
DATA_PATH = os.path.join(BASE_DIR, 'static', 'yolo','dataset_yolo', "data.yaml")
app.config.from_object(Config)
# Ensure directories exist
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
os.makedirs(app.config['SAM_RESULT_FOLDER'], exist_ok=True)
os.makedirs(app.config['YOLO_RESULT_FOLDER'], exist_ok=True)
os.makedirs(app.config['YOLO_TRAIN_IMAGE_FOLDER'], exist_ok=True)
os.makedirs(app.config['YOLO_TRAIN_LABEL_FOLDER'], exist_ok=True)
os.makedirs(app.config['AREA_DATA_FOLDER'], exist_ok=True)
# Initialize Yolo model
try:
model = YOLO(app.config['YOLO_PATH'])
except Exception as e:
logger.error(f"Failed to initialize YOLO model: {str(e)}")
raise
try:
sam2_checkpoint = app.config['SAM_2']
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu")
predictor = SAM2ImagePredictor(sam2_model)
except Exception as e:
logger.error(f"Failed to initialize SAM model: {str(e)}")
raise
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
def scale_coordinates(coords, original_dims, target_dims):
"""
Scale coordinates from one dimension space to another.
Args:
coords: List of [x, y] coordinates
original_dims: Tuple of (width, height) of original space
target_dims: Tuple of (width, height) of target space
Returns:
Scaled coordinates
"""
scale_x = target_dims[0] / original_dims[0]
scale_y = target_dims[1] / original_dims[1]
return [
[int(coord[0] * scale_x), int(coord[1] * scale_y)]
for coord in coords
]
def scale_box(box, original_dims, target_dims):
"""
Scale bounding box coordinates from one dimension space to another.
Args:
box: List of [x1, y1, x2, y2] coordinates
original_dims: Tuple of (width, height) of original space
target_dims: Tuple of (width, height) of target space
Returns:
Scaled box coordinates
"""
scale_x = target_dims[0] / original_dims[0]
scale_y = target_dims[1] / original_dims[1]
return [
int(box[0] * scale_x), # x1
int(box[1] * scale_y), # y1
int(box[2] * scale_x), # x2
int(box[3] * scale_y) # y2
]
def retrain_model_fn():
# Parameters for retraining
data_path = app.config['DATA_PATH']
epochs = 5
img_size = 640
batch_size = 8
# Start training with YOLO, using event listeners for epoch completion
for epoch in range(epochs):
# Train the model for one epoch, here we simulate with a loop
model.train(
data=data_path,
epochs=1, # Use 1 epoch per call to get individual progress
imgsz=img_size,
batch=batch_size,
device="cpu" # Adjust based on system capabilities
)
# Emit an update to the client after each epoch
socketio.emit('training_update', {
'epoch': epoch + 1,
'status': f"Epoch {epoch + 1} complete"
})
# Emit a message once training is complete
socketio.emit('training_complete', {'status': "Retraining complete"})
model.save(app.config['YOLO_PATH'])
logger.info("Model retrained successfully")
@app.route('/')
def index():
return render_template('index.html')
@app.route('/yolo')
def yolo():
return render_template('yolo.html')
@app.route('/upload_sam', methods=['POST'])
def upload_sam_file():
"""
Handles SAM image upload and embeds the image into the predictor instance.
Returns:
JSON response with 'message', 'image_url', 'filename', and 'dimensions' keys
on success, or 'error' key with an appropriate error message on failure.
"""
try:
if 'file' not in request.files:
return jsonify({'error': 'No file part'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
if not allowed_file(file.filename):
return jsonify({'error': 'Invalid file type. Allowed types: PNG, JPG, JPEG'}), 400
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
# Set the image for predictor right after upload
image = cv2.imread(filepath)
if image is None:
return jsonify({'error': 'Failed to load uploaded image'}), 500
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
logger.info("Image embedded successfully")
# Get image dimensions
height, width = image.shape[:2]
image_url = url_for('static', filename=f'uploads/{filename}')
logger.info(f"File uploaded successfully: {filepath}")
return jsonify({
'message': 'File uploaded successfully',
'image_url': image_url,
'filename': filename,
'dimensions': {
'width': width,
'height': height
}
})
except Exception as e:
logger.error(f"Upload error: {str(e)}")
return jsonify({'error': 'Server error during upload'}), 500
@app.route('/upload_yolo', methods=['POST'])
def upload_yolo_file():
"""
Upload a YOLO image file
This endpoint allows a POST request containing a single image file. The file is
saved to the uploads folder and the image is embedded into the YOLO model.
Returns a JSON response with the following keys:
- message: a success message
- image_url: the URL of the uploaded image
- filename: the name of the uploaded file
If an error occurs, the JSON response will contain an 'error' key with a
descriptive error message.
"""
try:
if 'file' not in request.files:
return jsonify({'error': 'No file part'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
if not allowed_file(file.filename):
return jsonify({'error': 'Invalid file type. Allowed types: PNG, JPG, JPEG'}), 400
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
image_url = url_for('static', filename=f'uploads/{filename}')
logger.info(f"File uploaded successfully: {filepath}")
return jsonify({
'message': 'File uploaded successfully',
'image_url': image_url,
'filename': filename,
})
except Exception as e:
logger.error(f"Upload error: {str(e)}")
return jsonify({'error': 'Server error during upload'}), 500
@app.route('/generate_mask', methods=['POST'])
def generate_mask():
"""
Generate a mask for a given image using the YOLO model
@param data: a JSON object containing the following keys:
- filename: the name of the image file
- normalized_void_points: a list of normalized 2D points (x, y) representing the voids
- normalized_component_boxes: a list of normalized 2D bounding boxes (x, y, w, h) representing the components
@return: a JSON object containing the following keys:
- status: a string indicating the status of the request
- train_image_url: the URL of the saved train image
- result_path: the URL of the saved result image
"""
try:
data = request.json
normalized_void_points = data.get('void_points', [])
normalized_component_boxes = data.get('component_boxes', [])
filename = data.get('filename', '')
if not filename:
return jsonify({'error': 'No filename provided'}), 400
image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
if not os.path.exists(image_path):
return jsonify({'error': 'Image file not found'}), 404
# Read image
image = cv2.imread(image_path)
if image is None:
return jsonify({'error': 'Failed to load image'}), 500
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_height, image_width = image.shape[:2]
# Denormalize coordinates back to pixel values
void_points = [
[int(point[0] * image_width), int(point[1] * image_height)]
for point in normalized_void_points
]
logger.info(f"Void points: {void_points}")
component_boxes = [
[
int(box[0] * image_width),
int(box[1] * image_height),
int(box[2] * image_width),
int(box[3] * image_height)
]
for box in normalized_component_boxes
]
logger.info(f"Void points: {void_points}")
# Create a list to store individual void masks
void_masks = []
# Process void points one by one
for point in void_points:
# Convert point to correct format: [N, 2] array
point_coord = np.array([[point[0], point[1]]])
point_label = np.array([1]) # Single label
masks, scores, _ = predictor.predict(
point_coords=point_coord,
point_labels=point_label,
multimask_output=True # Get multiple masks
)
if len(masks) > 0: # Check if any masks were generated
# Get the mask with highest score
best_mask_idx = np.argmax(scores)
void_masks.append(masks[best_mask_idx])
logger.info(f"Processed void point {point} with score {scores[best_mask_idx]}")
# Process component boxes
component_masks = []
if component_boxes:
for box in component_boxes:
# Convert box to correct format: [2, 2] array
box_np = np.array([[box[0], box[1]], [box[2], box[3]]])
masks, scores, _ = predictor.predict(
box=box_np,
multimask_output=True
)
if len(masks) > 0:
best_mask_idx = np.argmax(scores)
component_masks.append(masks[best_mask_idx])
logger.info(f"Processed component box {box}")
# Create visualization with different colors for each void
combined_image = image.copy()
# Font settings for labels
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.6
font_color = (0,0,0) # White text color
font_thickness = 1
background_color = (255, 255, 255) # White background for text
# Helper function to get bounding box coordinates
def get_bounding_box(mask):
coords = np.column_stack(np.where(mask))
x_min, y_min = coords.min(axis=0)
x_max, y_max = coords.max(axis=0)
return (x_min, y_min, x_max, y_max)
# Helper function to add text with background
def put_text_with_background(img, text, pos):
# Calculate text size
(text_w, text_h), _ = cv2.getTextSize(text, font, font_scale, font_thickness)
# Define the rectangle coordinates for background
background_tl = (pos[0], pos[1] - text_h - 2)
background_br = (pos[0] + text_w, pos[1] + 2)
# Draw white rectangle as background
cv2.rectangle(img, background_tl, background_br, background_color, -1)
# Put the text over the background rectangle
cv2.putText(img, text, pos, font, font_scale, font_color, font_thickness, cv2.LINE_AA)
def get_safe_label_position(x_min, y_min, x_max, y_max, text_w, text_h, img_width, img_height):
# Default to top-right of bounding box
x_pos = min(y_max, img_width - text_w - 10) # Keep 10px margin from the right
y_pos = max(x_min + text_h + 5, text_h + 5) # Keep 5px margin from the top
return x_pos, y_pos
# Apply void masks with different colors
for mask in void_masks:
mask = mask.astype(bool)
combined_image[mask, 0] = np.clip(0.5 * image[mask, 0] + 0.5 * 255, 0, 255) # Red channel with transparency
combined_image[mask, 1] = np.clip(0.5 * image[mask, 1], 0, 255) # Green channel reduced
combined_image[mask, 2] = np.clip(0.5 * image[mask, 2], 0, 255)
logger.info("Mask Drawn")
# Apply component masks in green
for mask in component_masks:
mask = mask.astype(bool)
# Only apply green where there is no red overlay
non_red_area = mask & ~np.any([void_mask for void_mask in void_masks], axis=0)
combined_image[non_red_area, 0] = np.clip(0.5 * image[non_red_area, 0], 0, 255) # Reduced red channel
combined_image[non_red_area, 1] = np.clip(0.5 * image[non_red_area, 1] + 0.5 * 255, 0, 255) # Green channel
combined_image[non_red_area, 2] = np.clip(0.5 * image[non_red_area, 2], 0, 255)
logger.info("Mask Drawn")
# Add labels on top of masks
for i,mask in enumerate(void_masks):
x_min, y_min, x_max, y_max = get_bounding_box(mask)
(text_w, text_h), _ = cv2.getTextSize("Void", font, font_scale, font_thickness)
label_position = get_safe_label_position(x_min, y_min, x_max, y_max, text_w, text_h, combined_image.shape[1], combined_image.shape[0])
put_text_with_background(combined_image, f"Void {i+1}", label_position)
for i,mask in enumerate(component_masks):
i=i+1
x_min, y_min, x_max, y_max = get_bounding_box(mask)
(text_w, text_h), _ = cv2.getTextSize("Component", font, font_scale, font_thickness)
label_position = get_safe_label_position(x_min, y_min, x_max, y_max, text_w, text_h, combined_image.shape[1], combined_image.shape[0])
put_text_with_background(combined_image, f"Component {i}", label_position)
# Prepare an empty list to store the output in the required format
mask_coordinates = []
for mask in void_masks:
# Get contours from the mask
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Image dimensions
height, width = mask.shape
# For each contour, extract the normalized coordinates
for contour in contours:
contour_points = contour.reshape(-1, 2) # Flatten to (N, 2) where N is the number of points
normalized_points = contour_points / [width, height] # Normalize to (0, 1)
class_id = 1 # 1 for voids
row = [class_id] + normalized_points.flatten().tolist() # Flatten and add the class
mask_coordinates.append(row)
for mask in component_masks:
# Get contours from the mask
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Filter to keep only the largest contour
contours = sorted(contours, key=cv2.contourArea, reverse=True)
largest_contour = [contours[0]] if contours else []
# Image dimensions
height, width = mask.shape
# For each contour, extract the normalized coordinates
for contour in largest_contour:
contour_points = contour.reshape(-1, 2) # Flatten to (N, 2) where N is the number of points
normalized_points = contour_points / [width, height] # Normalize to (0, 1)
class_id = 0 # for components
row = [class_id] + normalized_points.flatten().tolist() # Flatten and add the class
mask_coordinates.append(row)
mask_coordinates_filename = f'{filename}.txt' # Create a unique filename
mask_coordinates_path = os.path.join(app.config['YOLO_TRAIN_LABEL_FOLDER'], mask_coordinates_filename)
with open(mask_coordinates_path, "w") as file:
for row in mask_coordinates:
# Join elements of the row into a string with spaces in between and write to the file
file.write(" ".join(map(str, row)) + "\n")
# Save train image
train_image_filepath = os.path.join(app.config['YOLO_TRAIN_IMAGE_FOLDER'], filename)
shutil.copy(image_path, train_image_filepath)
train_image_url = url_for('static', filename=f'yolo/dataset_yolo/train/images/{filename}')
# Save result
result_filename = f'segmented_{filename}'
result_path = os.path.join(app.config['SAM_RESULT_FOLDER'], result_filename)
plt.imsave(result_path, combined_image)
logger.info("Mask generation completed successfully")
return jsonify({
'status': 'success',
'train_image_url':train_image_url,
'result_path': url_for('static', filename=f'sam/sam_results/{result_filename}')
})
except Exception as e:
logger.error(f"Mask generation error: {str(e)}")
return jsonify({'error': str(e)}), 500
@app.route('/classify', methods=['POST'])
def classify():
"""
Classify an image and return the classification result, area data, and the annotated image.
Request body should contain a JSON object with a single key 'filename' specifying the image file to be classified.
Returns a JSON object with the following keys:
- status: 'success' if the classification is successful, 'error' if there is an error.
- result_path: URL of the annotated image.
- area_data: a list of dictionaries containing the area and overlap statistics for each component.
- area_data_path: URL of the JSON file containing the area data.
If there is an error, returns a JSON object with a single key 'error' containing the error message.
"""
try:
data = request.json
filename = data.get('filename', '')
if not filename:
return jsonify({'error': 'No filename provided'}), 400
image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
if not os.path.exists(image_path):
return jsonify({'error': 'Image file not found'}), 404
# Read image
image = cv2.imread(image_path)
if image is None:
return jsonify({'error': 'Failed to load image'}), 500
results = model(image)
result = results[0]
component_masks = []
void_masks = []
# Extract masks and labels from results
for mask, label in zip(result.masks.data, result.boxes.cls):
mask_array = mask.cpu().numpy().astype(bool) # Convert to a binary mask (boolean array)
if label == 1: # Assuming label '1' represents void
void_masks.append(mask_array)
elif label == 0: # Assuming label '0' represents component
component_masks.append(mask_array)
# Calculate area and overlap statistics
area_data = []
for i, component_mask in enumerate(component_masks):
component_area = np.sum(component_mask).item() # Total component area in pixels
void_area_within_component = 0
max_void_area_percentage = 0
# Calculate overlap of each void mask with the component mask
for void_mask in void_masks:
overlap_area = np.sum(void_mask & component_mask).item() # Overlapping area
void_area_within_component += overlap_area
void_area_percentage = (overlap_area / component_area) * 100 if component_area > 0 else 0
max_void_area_percentage = max(max_void_area_percentage, void_area_percentage)
# Append data for this component
area_data.append({
"Image": filename,
'Component': f'Component {i+1}',
'Area': component_area,
'Void Area (pixels)': void_area_within_component,
'Void Area %': void_area_within_component / component_area * 100 if component_area > 0 else 0,
'Max Void Area %': max_void_area_percentage
})
area_data_filename = f'area_data_{filename.split("/")[-1]}.json' # Create a unique filename
area_data_path = os.path.join(app.config['AREA_DATA_FOLDER'], area_data_filename)
with open(area_data_path, 'w') as json_file:
json.dump(area_data, json_file, indent=4)
annotated_image = result.plot()
output_filename = f'output_{filename}'
output_image_path = os.path.join(app.config['YOLO_RESULT_FOLDER'], output_filename)
plt.imsave(output_image_path, annotated_image)
logger.info("Classification completed successfully")
return jsonify({
'status': 'success',
'result_path': url_for('static', filename=f'yolo/yolo_results/{output_filename}'),
'area_data': area_data,
'area_data_path': url_for('static', filename=f'yolo/area_data/{area_data_filename}')
})
except Exception as e:
logger.error(f"Classification error: {str(e)}")
return jsonify({'error': str(e)}), 500
retraining_status = {
'status': 'idle',
'progress': None,
'message': None
}
@app.route('/start_retraining', methods=['GET', 'POST'])
def start_retraining():
"""
Start the model retraining process.
If the request is a POST, start the model retraining process in a separate thread.
If the request is a GET, render the retraining page.
Returns:
A JSON response with the status of the retraining process, or a rendered HTML page.
"""
if request.method == 'POST':
# Reset status
global retraining_status
retraining_status['status'] = 'in_progress'
retraining_status['progress'] = 'Initializing'
# Start retraining in a separate thread
threading.Thread(target=retrain_model_fn).start()
return jsonify({'status': 'started'})
else:
# GET request - render the retraining page
return render_template('retrain.html')
# Event handler for client connection
@socketio.on('connect')
def handle_connect():
print('Client connected')
if __name__ == '__main__':
app.run(port=5001, debug=True) |