Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline | |
# # Initialize the pipeline with the image-to-text model | |
# model_path = "Salesforce/blip-image-captioning-base" | |
# if not os.path.exists(model_path): | |
# raise FileNotFoundError(f"Model path {model_path} does not exist. Please provide a valid path.") | |
# Initialize the image-to-text pipeline with the specified model | |
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
#pipe = pipeline("image-to-text", model=model_path) | |
def launch(input): | |
""" | |
Function to generate image caption. | |
Args: | |
input (PIL.Image): Input image for captioning. | |
Returns: | |
str: Generated caption for the input image. | |
""" | |
out = pipe(input) | |
return out[0]['generated_text'] | |
# Create a Gradio interface for the image-to-text pipeline | |
iface = gr.Interface( | |
fn=launch, # Function to generate captions | |
inputs=gr.Image(type='pil'), # Input type: Image (PIL format) | |
outputs="text" # Output type: Text | |
) | |
# Launch the Gradio interface | |
iface.launch() | |