# Description: This is the main file to run the Gradio interface for the object detection model. from ultralytics import YOLO from PIL import Image import gradio as gr from huggingface_hub import snapshot_download import os model_path = "best_int8_openvino_model" # Example paths for Gradio image_examples = [["DurianMangosteen1.jpg"], ["DurianMangosteen2.jpg"]] # Load the model def load_model(repo_id): download_dir = snapshot_download(repo_id) # download the model from the Hugging Face Hub print(download_dir) path = os.path.join(download_dir, "best_int8_openvino_model") # path to the model print(path) detection_model = YOLO(path, task='detect') # load the model return detection_model # Predict the image def predict(pilimg): source = pilimg # x = np.asarray(pilimg) # print(x.shape) result = detection_model.predict(source, conf=0.4, iou=0.6) # confidence threshold, intersection over union threshold #print("Result: ", result) if not result or len(result[0].boxes) == 0: # if no object detected gr.Warning("No object detected in the image!") else: img_bgr = result[0].plot() # plot the image out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image return out_pilimg REPO_ID = "ITI107-2024S2/8035531F" # The repo ID of the model detection_model = load_model(REPO_ID) title = "Detect Durian and Mangosteen (King and Queen of Fruits) In The Image" interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil", label="Input Image"), outputs=gr.Image(type="pil", label="Object Detected Image"), title=title, examples=image_examples, ) # Launch the interface interface.launch(share=True)