Spaces:
Running
Running
wookimchye
commited on
Upload 3 files
Browse files- DurianMangosteen1.jpg +0 -0
- DurianMangosteen2.jpg +0 -0
- app.py +20 -19
DurianMangosteen1.jpg
ADDED
DurianMangosteen2.jpg
ADDED
app.py
CHANGED
@@ -1,9 +1,4 @@
|
|
1 |
-
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[4]:
|
5 |
-
|
6 |
-
|
7 |
from ultralytics import YOLO
|
8 |
from PIL import Image
|
9 |
import gradio as gr
|
@@ -12,28 +7,35 @@ import os
|
|
12 |
|
13 |
model_path = "best_int8_openvino_model"
|
14 |
|
|
|
|
|
|
|
|
|
15 |
def load_model(repo_id):
|
16 |
-
download_dir = snapshot_download(repo_id)
|
17 |
print(download_dir)
|
18 |
-
path = os.path.join(download_dir, "best_int8_openvino_model")
|
19 |
print(path)
|
20 |
-
detection_model = YOLO(path, task='detect')
|
21 |
return detection_model
|
22 |
|
23 |
-
|
24 |
def predict(pilimg):
|
25 |
-
|
26 |
source = pilimg
|
27 |
# x = np.asarray(pilimg)
|
28 |
# print(x.shape)
|
29 |
-
result = detection_model.predict(source, conf=0.4, iou=0.6)
|
30 |
-
img_bgr = result[0].plot()
|
31 |
-
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
REPO_ID = "ITI107-2024S2/8035531F"
|
37 |
detection_model = load_model(REPO_ID)
|
38 |
|
39 |
title = "Detect Durian and Mangosteen (King and Queen of Fruits) In The Image"
|
@@ -42,14 +44,13 @@ interface = gr.Interface(
|
|
42 |
inputs=gr.Image(type="pil", label="Input Image"),
|
43 |
outputs=gr.Image(type="pil", label="Object Detected Image"),
|
44 |
title=title,
|
|
|
45 |
)
|
46 |
|
47 |
# Launch the interface
|
48 |
interface.launch(share=True)
|
49 |
|
50 |
|
51 |
-
# In[ ]:
|
52 |
-
|
53 |
|
54 |
|
55 |
|
|
|
1 |
+
# Description: This is the main file to run the Gradio interface for the object detection model.
|
|
|
|
|
|
|
|
|
|
|
2 |
from ultralytics import YOLO
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
|
|
7 |
|
8 |
model_path = "best_int8_openvino_model"
|
9 |
|
10 |
+
# Example paths for Gradio
|
11 |
+
image_examples = [["DurianMangosteen1.jpg"], ["DurianMangosteen2.jpg"]]
|
12 |
+
|
13 |
+
# Load the model
|
14 |
def load_model(repo_id):
|
15 |
+
download_dir = snapshot_download(repo_id) # download the model from the Hugging Face Hub
|
16 |
print(download_dir)
|
17 |
+
path = os.path.join(download_dir, "best_int8_openvino_model") # path to the model
|
18 |
print(path)
|
19 |
+
detection_model = YOLO(path, task='detect') # load the model
|
20 |
return detection_model
|
21 |
|
22 |
+
# Predict the image
|
23 |
def predict(pilimg):
|
|
|
24 |
source = pilimg
|
25 |
# x = np.asarray(pilimg)
|
26 |
# print(x.shape)
|
27 |
+
result = detection_model.predict(source, conf=0.4, iou=0.6) # confidence threshold, intersection over union threshold
|
|
|
|
|
28 |
|
29 |
+
#print("Result: ", result)
|
30 |
+
if not result or len(result[0].boxes) == 0: # if no object detected
|
31 |
+
gr.Warning("No object detected in the image!")
|
32 |
+
else:
|
33 |
+
img_bgr = result[0].plot() # plot the image
|
34 |
+
out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image
|
35 |
+
|
36 |
+
return out_pilimg
|
37 |
|
38 |
+
REPO_ID = "ITI107-2024S2/8035531F" # The repo ID of the model
|
39 |
detection_model = load_model(REPO_ID)
|
40 |
|
41 |
title = "Detect Durian and Mangosteen (King and Queen of Fruits) In The Image"
|
|
|
44 |
inputs=gr.Image(type="pil", label="Input Image"),
|
45 |
outputs=gr.Image(type="pil", label="Object Detected Image"),
|
46 |
title=title,
|
47 |
+
examples=image_examples,
|
48 |
)
|
49 |
|
50 |
# Launch the interface
|
51 |
interface.launch(share=True)
|
52 |
|
53 |
|
|
|
|
|
54 |
|
55 |
|
56 |
|