Spaces:
Sleeping
Sleeping
SubbaRaoKota
commited on
Upload 6 files
Browse files- README.md +4 -3
- app.py +91 -0
- data/label_map.pbtxt +8 -0
- requirements.txt +6 -0
- test_samples/Image_64.jpg +0 -0
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
---
|
2 |
title: 23B060P
|
3 |
emoji: 🐢
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
|
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
title: 23B060P
|
3 |
emoji: 🐢
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
+
python_version: 3.8
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 4.0.2
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
license: apache-2.0
|
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import numpy as np
|
3 |
+
from six import BytesIO
|
4 |
+
from PIL import Image
|
5 |
+
import tensorflow as tf
|
6 |
+
from object_detection.utils import label_map_util
|
7 |
+
from object_detection.utils import visualization_utils as viz_utils
|
8 |
+
from object_detection.utils import ops as utils_op
|
9 |
+
import tarfile
|
10 |
+
import wget
|
11 |
+
import gradio as gr
|
12 |
+
from huggingface_hub import snapshot_download
|
13 |
+
import os
|
14 |
+
|
15 |
+
PATH_TO_LABELS = 'data/label_map.pbtxt'
|
16 |
+
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
|
17 |
+
|
18 |
+
def pil_image_as_numpy_array(pilimg):
|
19 |
+
|
20 |
+
img_array = tf.keras.utils.img_to_array(pilimg)
|
21 |
+
img_array = np.expand_dims(img_array, axis=0)
|
22 |
+
return img_array
|
23 |
+
|
24 |
+
def load_image_into_numpy_array(path):
|
25 |
+
|
26 |
+
image = None
|
27 |
+
image_data = tf.io.gfile.GFile(path, 'rb').read()
|
28 |
+
image = Image.open(BytesIO(image_data))
|
29 |
+
return pil_image_as_numpy_array(image)
|
30 |
+
|
31 |
+
def load_model():
|
32 |
+
download_dir = snapshot_download(REPO_ID)
|
33 |
+
saved_model_dir = os.path.join(download_dir, "saved_model")
|
34 |
+
detection_model = tf.saved_model.load(saved_model_dir)
|
35 |
+
return detection_model
|
36 |
+
|
37 |
+
def load_model2():
|
38 |
+
wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
|
39 |
+
tarfile.open("balloon_model.tar.gz").extractall()
|
40 |
+
model_dir = 'saved_model'
|
41 |
+
detection_model = tf.saved_model.load(str(model_dir))
|
42 |
+
return detection_model
|
43 |
+
|
44 |
+
# samples_folder = 'test_samples
|
45 |
+
# image_path = 'test_samples/sample_balloon.jpeg
|
46 |
+
#
|
47 |
+
|
48 |
+
def predict(pilimg):
|
49 |
+
|
50 |
+
image_np = pil_image_as_numpy_array(pilimg)
|
51 |
+
return predict2(image_np)
|
52 |
+
|
53 |
+
def predict2(image_np):
|
54 |
+
|
55 |
+
results = detection_model(image_np)
|
56 |
+
|
57 |
+
# different object detection models have additional results
|
58 |
+
result = {key:value.numpy() for key,value in results.items()}
|
59 |
+
|
60 |
+
label_id_offset = 0
|
61 |
+
image_np_with_detections = image_np.copy()
|
62 |
+
|
63 |
+
viz_utils.visualize_boxes_and_labels_on_image_array(
|
64 |
+
image_np_with_detections[0],
|
65 |
+
result['detection_boxes'][0],
|
66 |
+
(result['detection_classes'][0] + label_id_offset).astype(int),
|
67 |
+
result['detection_scores'][0],
|
68 |
+
category_index,
|
69 |
+
use_normalized_coordinates=True,
|
70 |
+
max_boxes_to_draw=200,
|
71 |
+
min_score_thresh=.60,
|
72 |
+
agnostic_mode=False,
|
73 |
+
line_thickness=2)
|
74 |
+
|
75 |
+
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
|
76 |
+
|
77 |
+
return result_pil_img
|
78 |
+
|
79 |
+
|
80 |
+
REPO_ID = "SubbaRaoKota/myobjmodel"
|
81 |
+
detection_model = load_model()
|
82 |
+
# pil_image = Image.open(image_path)
|
83 |
+
# image_arr = pil_image_as_numpy_array(pil_image)
|
84 |
+
|
85 |
+
# predicted_img = predict(image_arr)
|
86 |
+
# predicted_img.save('predicted.jpg')
|
87 |
+
|
88 |
+
gr.Interface(fn=predict,
|
89 |
+
inputs=gr.Image(type="pil"),
|
90 |
+
outputs=gr.Image(type="pil")
|
91 |
+
).launch(share=True)
|
data/label_map.pbtxt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
item {
|
2 |
+
id: 1
|
3 |
+
name: 'burger'
|
4 |
+
}
|
5 |
+
item {
|
6 |
+
id: 2
|
7 |
+
name: 'fries'
|
8 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#tf2-tensorflow-object-detection-api
|
2 |
+
tf-models-research-object-detection
|
3 |
+
matplotlib
|
4 |
+
wget
|
5 |
+
Pillow==9.5
|
6 |
+
huggingface_hub
|
test_samples/Image_64.jpg
ADDED