Spaces:
Runtime error
Runtime error
File size: 4,911 Bytes
d4c4173 764c882 d4c4173 9b64a9d d4c4173 e441fe1 3613da0 542fd83 3613da0 9467d94 d4c4173 e441fe1 d4c4173 3613da0 70a42a9 a9f5c62 e441fe1 1c4d450 70a42a9 0e8fbc4 e441fe1 70a42a9 e441fe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
import cv2
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model():
download_dir = snapshot_download(REPO_ID)
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
# samples_folder = 'test_samples
# image_path = 'test_samples/sample_balloon.jpeg
#
def predict(pilimg):
image_np = pil_image_as_numpy_array(pilimg)
return predict2(image_np)
def predict2(image_np):
results = detection_model(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.60,
agnostic_mode=False,
line_thickness=2)
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img
def predict_on_video(video_in_filepath, video_out_filepath, detection_model, category_index):
video_reader = cv2.VideoCapture(video_in_filepath)
frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = video_reader.get(cv2.CAP_PROP_FPS)
video_writer = cv2.VideoWriter(
video_out_filepath,
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(frame_w, frame_h)
)
while True:
ret, frame = video_reader.read()
if not ret:
break # Break the loop if the video is finished
processed_frame = predict(frame)
processed_frame_np = np.array(processed_frame)
video_writer.write(processed_frame_np)
# Release camera and close windows
video_reader.release()
video_writer.release()
cv2.destroyAllWindows()
cv2.waitKey(1)
video_reader.release()
video_writer.release()
cv2.destroyAllWindows()
cv2.waitKey(1)
# Function to process a video
def process_video(video_path):
output_path = "output_video.mp4" # Output path for the processed video
predict_on_video(video_path, output_path, detection_model, category_index)
return output_path
# Specify paths to example images
sample_images = [["00000031.jpg"], ["00000053.jpg"],
["00000057.jpg"], ["00000078.jpg"],
["00000854.jpg"], ["00000995.jpg"],
["00001052.jpg"],["00001444.jpg"],["00001452.jpg"]
]
REPO_ID = "jiawenchim/iti107model"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
tab1 = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
examples=sample_images,
title="Image - Object Detection (Battery and Dice)",
description='Model used: SSD MobileNet V1 FPN 640x640.'
)
tab2 = gr.Interface(
fn=process_video,
inputs=gr.File(label="Upload a video"),
outputs=gr.File(label="output"),
title='Video - Object Detection (Battery and Dice)',
examples=[["Three Dice Trick.mp4"],["Look at the fork and battery-in power.mp4"]],
description='For video processing interface, I would like to endorse student 23B712M for his works. \n Model used: SSD MobileNet V1 FPN 640x640. \n Remarks: Running inference on Three Dice Tricks will take roughly 15-20mins'
)
iface = gr.TabbedInterface([tab1, tab2], tab_names = ['Image','Video'], title='Battery and Dice detection')
iface.launch(share=True) |