File size: 7,622 Bytes
7eb34be
f146523
 
 
 
 
 
df1b0df
f146523
 
703db99
 
f146523
 
 
 
 
 
 
 
 
df1b0df
 
 
 
 
 
 
 
 
 
f146523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eb34be
f146523
7eb34be
 
 
 
f146523
df1b0df
703db99
7eb34be
f146523
df1b0df
 
 
 
 
f146523
7eb34be
 
f146523
 
7eb34be
 
 
 
 
f146523
 
 
 
 
7eb34be
f146523
7eb34be
f146523
 
 
 
 
 
 
 
 
 
efdf2e9
f146523
 
7eb34be
f146523
 
df1b0df
0f47633
df1b0df
 
 
 
 
 
7eb34be
 
 
 
df1b0df
7eb34be
 
f146523
 
7eb34be
df1b0df
 
 
 
7eb34be
 
 
 
 
 
 
 
 
 
 
 
df1b0df
 
 
 
 
 
 
 
 
7eb34be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f146523
df1b0df
 
7eb34be
 
 
 
 
df1b0df
 
 
 
 
 
7eb34be
 
 
 
 
 
 
df1b0df
7eb34be
 
 
 
 
99179e0
f146523
df1b0df
 
 
 
 
 
 
 
 
 
 
 
 
 
f146523
 
7eb34be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import spaces
import random
import numpy as np
from PIL import Image

import torch
import torchvision.transforms.functional as F
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, AutoencoderTiny, AutoencoderKL
import gradio as gr

device = "cuda"
weight_type = torch.float16

controlnet = ControlNetModel.from_pretrained(
    "IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type
).to(device)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type
)
pipe.to(device)

vae_tiny = AutoencoderTiny.from_pretrained(
    "IDKiro/sdxs-512-dreamshaper", subfolder="vae"
)
vae_tiny.to(device, dtype=weight_type)

vae_large = AutoencoderKL.from_pretrained(
    "IDKiro/sdxs-512-dreamshaper", subfolder="vae_large"
)
vae_tiny.to(device, dtype=weight_type)

style_list = [
    {
        "name": "No Style",
        "prompt": "{prompt}",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
    },
]

styles = {k["name"]: k["prompt"] for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "No Style"
MAX_SEED = np.iinfo(np.int32).max


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU
def run(
    image,
    prompt,
    prompt_template,
    style_name,
    controlnet_conditioning_scale,
    vae_type="tiny vae",
    device_type="GPU",
    param_dtype="torch.float16",
):
    if vae_type == "tiny vae":
        pipe.vae = vae_tiny
    elif vae_type == "large vae":
        pipe.vae = vae_large

    if device_type == "CPU":
        device = "cpu"
        param_dtype = "torch.float32"
    else:
        device = "cuda"

    pipe.to(
        torch_device=device,
        torch_dtype=torch.float16 if param_dtype == "torch.float16" else torch.float32,
    )

    print(f"prompt: {prompt}")
    print("sketch updated")
    if image is None:
        ones = Image.new("L", (512, 512), 255)
        return ones
    prompt = prompt_template.replace("{prompt}", prompt)
    control_image = Image.fromarray(255 - np.array(image["composite"])[:, :, -1])

    output_pil = pipe(
        prompt=prompt,
        image=control_image,
        width=512,
        height=512,
        guidance_scale=0.0,
        num_inference_steps=1,
        num_images_per_prompt=1,
        output_type="pil",
        controlnet_conditioning_scale=float(controlnet_conditioning_scale),
    ).images[0]

    return output_pil


with gr.Blocks(theme="monochrome") as demo:
    gr.Markdown("# SDXS-512-DreamShaper-Sketch")
    gr.Markdown(
        "[SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions](https://arxiv.org/abs/2403.16627) | [GitHub](https://github.com/IDKiro/sdxs)"
    )
    with gr.Row():
        with gr.Column():
            gr.Markdown("## INPUT")
            image = gr.Sketchpad(
                type="pil",
                image_mode="RGBA",
                brush=gr.Brush(colors=["#000000"], color_mode="fixed", default_size=8),
                crop_size="1:1",
            )

            prompt = gr.Textbox(label="Prompt", value="", show_label=True)
            with gr.Row():
                style = gr.Dropdown(
                    label="Style",
                    choices=STYLE_NAMES,
                    value=DEFAULT_STYLE_NAME,
                    scale=1,
                )
                prompt_temp = gr.Textbox(
                    label="Prompt Style Template",
                    value=styles[DEFAULT_STYLE_NAME],
                    scale=2,
                    max_lines=1,
                )

            controlnet_conditioning_scale = gr.Slider(
                label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8
            )

            vae_choices = ["tiny vae", "large vae"]
            vae_type = gr.Radio(
                vae_choices,
                label="Image Decoder Type",
                value=vae_choices[0],
                interactive=True,
                info="To save GPU memory, use tiny vae. For better quality, use large vae.",
            )

            device_choices = ["GPU", "CPU"]
            device_type = gr.Radio(
                device_choices,
                label="Device",
                value=device_choices[0],
                interactive=True,
                info="Many thanks to the community for the GPU!",
            )

            dtype_choices = ["torch.float16", "torch.float32"]
            param_dtype = gr.Radio(
                dtype_choices,
                label="torch.weight_type",
                value=dtype_choices[0],
                interactive=True,
                info="To save GPU memory, use torch.float16. For better quality, use torch.float32.",
            )

        with gr.Column():
            gr.Markdown("## OUTPUT")
            result = gr.Image(
                label="Result",
                show_label=False,
                show_download_button=True,
            )
            run_button = gr.Button("Run")
            gr.Markdown("### Instructions")
            gr.Markdown("**1**. Enter a text prompt (e.g. cat)")
            gr.Markdown("**2**. Start sketching")
            gr.Markdown("**3**. Change the image style using a style template")
            gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider")

    inputs = [
        image,
        prompt,
        prompt_temp,
        style,
        controlnet_conditioning_scale,
        vae_type,
        device_type,
        param_dtype,
    ]
    outputs = [result]

    prompt.submit(fn=run, inputs=inputs, outputs=outputs)
    style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then(
        fn=run,
        inputs=inputs,
        outputs=outputs,
    )
    image.change(
        run,
        inputs=inputs,
        outputs=outputs,
    )
    run_button.click(
        run,
        inputs=inputs,
        outputs=outputs,
    )

if __name__ == "__main__":
    demo.queue().launch()