File size: 8,359 Bytes
8ca3a29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# python3.7
"""Script that synthesizes images with pre-trained models.

Support StyleGAN2 and StyleGAN3.
"""

import os
import argparse
from tqdm import tqdm
import numpy as np

import torch
from models import build_model
from utils.visualizers.html_visualizer import HtmlVisualizer
from utils.image_utils import save_image, resize_image
from utils.image_utils import postprocess_image
from utils.custom_utils import to_numpy


def parse_args():
    """Parses arguments."""
    parser = argparse.ArgumentParser()
    group = parser.add_argument_group('General options.')
    group.add_argument('weight_path', type=str,
                       help='Weight path to the pre-trained model.')
    group.add_argument('--save_dir', type=str, default=None,
                       help='Directory to save the results. If not specified, '
                            'the results will be saved to '
                            '`work_dirs/{TASK_SPECIFIC}/` by default.')
    group.add_argument('--job', type=str, default='synthesize',
                       help='Name for the job. (default: synthesize)')
    group.add_argument('--seed', type=int, default=4,
                       help='Seed for sampling. (default: 4)')
    group.add_argument('--nums', type=int, default=100,
                       help='Number of samples to synthesized. (default: 100)')
    group.add_argument('--img_size', type=int, default=1024,
                       help='Size of the synthesized images. (default: 1024)')
    group.add_argument('--vis_size', type=int, default=256,
                       help='Size of the visualize images. (default: 256)')
    group.add_argument('--w_dim', type=int, default=512,
                       help='Dimension of the latent w. (default: 512)')
    group.add_argument('--batch_size', type=int, default=4,
                       help='Batch size. (default: 4)')
    group.add_argument('--save_jpg', action='store_true', default=False,
                       help='Whether to save raw image. (default: False)')
    group.add_argument('-d', '--data_name', type=str, default='ffhq',
                       help='Name of the datasets. (default: ffhq)')
    group.add_argument('--latent_path', type=str, default='',
                       help='Path to the given latent codes. (default: None)')
    group.add_argument('--trunc_psi', type=float, default=0.7,
                       help='Psi factor used for truncation. (default: 0.7)')
    group.add_argument('--trunc_layers', type=int, default=8,
                       help='Number of layers to perform truncation.'
                            ' (default: 8)')

    group = parser.add_argument_group('StyleGAN2')
    group.add_argument('--stylegan2', action='store_true',
                       help='Whether or not using StyleGAN2. (default: False)')
    group.add_argument('--scale_stylegan2', type=float, default=1.0,
                       help='Scale for the number of channel fro stylegan2.')
    group.add_argument('--randomize_noise', type=str, default='const',
                       help='Noise type when synthesizing. (const or random)')

    group = parser.add_argument_group('StyleGAN3')
    group.add_argument('--stylegan3', action='store_true',
                       help='Whether or not using StyleGAN3. (default: False)')
    group.add_argument('--cfg', type=str, default='T',
                       help='Config of the stylegan3 (T/R).')
    group.add_argument('--scale_stylegan3r', type=float, default=2.0,
                       help='Scale for the number of channel for stylegan3 R.')
    group.add_argument('--scale_stylegan3t', type=float, default=1.0,
                       help='Scale for the number of channel for stylegan3 T.')
    group.add_argument('--tx', type=float, default=0,
                       help='Translate X-coordinate. (default: 0.0)')
    group.add_argument('--ty', type=float, default=0,
                       help='Translate Y-coordinate. (default: 0.0)')
    group.add_argument('--rotate', type=float, default=0,
                       help='Rotation angle in degrees. (default: 0)')
    return parser.parse_args()


def main():
    """Main function."""
    args = parse_args()
    # Parse model configuration.
    assert (args.stylegan2 and not args.stylegan3) or \
           (not args.stylegan2 and args.stylegan3)
    job_disc = ''
    if args.stylegan2:
        config = dict(model_type='StyleGAN2Generator',
                      resolution=args.img_size,
                      w_dim=args.w_dim,
                      fmaps_base=int(args.scale_stylegan2 * (32 << 10)),
                      fmaps_max=512,)
        job_disc += 'stylegan2'
    else:
        if args.stylegan3 and args.cfg == 'R':
            config = dict(model_type='StyleGAN3Generator',
                          resolution=args.img_size,
                          w_dim=args.w_dim,
                          fmaps_base=int(args.scale_stylegan3r * (32 << 10)),
                          fmaps_max=1024,
                          use_radial_filter=True,)
            job_disc += 'stylegan3r'
        elif args.stylegan3 and args.cfg == 'T':
            config = dict(model_type='StyleGAN3Generator',
                          resolution=args.img_size,
                          w_dim=args.w_dim,
                          fmaps_base=int(args.scale_stylegan3t * (32 << 10)),
                          fmaps_max=512,
                          use_radial_filter=False,
                          kernel_size=3,)
            job_disc += 'stylegan3t'
        else:
            raise TypeError(f'StyleGAN3 config type error, need `R/T`,'
                            f' but got {args.cfg} instead.')

    # Get work directory and job name.
    save_dir = args.save_dir or f'work_dirs/{args.job}/{args.data_name}'
    os.makedirs(save_dir, exist_ok=True)
    job_name = f'seed_{args.seed}_num_{args.nums}_{job_disc}'
    os.makedirs(f'{save_dir}/{job_name}', exist_ok=True)

    # Build generation and get synthesis kwargs.
    print('Building generator...')
    generator = build_model(**config)
    synthesis_kwargs = dict(trunc_psi=args.trunc_psi,
                            trunc_layers=args.trunc_layers,)
    # Load pre-trained weights.
    checkpoint_path = args.weight_path
    print(f'Loading checkpoint from `{checkpoint_path}` ...')
    checkpoint = torch.load(checkpoint_path, map_location='cpu')['models']
    if 'generator_smooth' in checkpoint:
        generator.load_state_dict(checkpoint['generator_smooth'])
    else:
        generator.load_state_dict(checkpoint['generator'])
    generator = generator.eval().cuda()
    print('Finish loading checkpoint.')

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if os.path.exists(args.latent_path):
        latent_zs = np.load(args.latent_path)
        latent_zs = latent_zs[:args.nums]
    else:
        latent_zs = np.random.randn(args.nums, generator.z_dim)
    num_images = latent_zs.shape[0]
    latent_zs = torch.from_numpy(latent_zs.astype(np.float32))
    html = HtmlVisualizer(grid_size=num_images)
    print(f'Synthesizing {num_images} images ...')
    latent_ws = []
    for batch_idx in tqdm(range(0, num_images, args.batch_size)):
        latent_z = latent_zs[batch_idx:batch_idx + args.batch_size]
        latent_z = latent_z.cuda()
        with torch.no_grad():
            g_outputs = generator(latent_z, **synthesis_kwargs)
            g_image = to_numpy(g_outputs['image'])
            images = postprocess_image(g_image)
        for idx in range(images.shape[0]):
            sub_idx = batch_idx + idx
            img = images[idx]
            row_idx, col_idx = divmod(sub_idx, html.num_cols)
            image = resize_image(img, (args.vis_size, args.vis_size))
            html.set_cell(row_idx, col_idx, image=image,
                          text=f'Sample {sub_idx:06d}')
            if args.save_jpg:
                save_path = f'{save_dir}/{job_name}/{sub_idx:06d}.jpg'
                save_image(save_path, img)
        latent_ws.append(to_numpy(g_outputs['wp']))
    latent_ws = np.concatenate(latent_ws, axis=0)
    print(f'shape of the latent code: {latent_ws.shape}')
    np.save(f'{save_dir}/{job_name}/latent_codes.npy', latent_ws)
    html.save(f'{save_dir}/{job_name}.html')
    print(f'Finish synthesizing {num_images} samples.')


if __name__ == '__main__':
    main()