avoid recalc prompt embeds
Browse files- app-img2img.py +16 -6
- app-txt2img.py +10 -6
app-img2img.py
CHANGED
@@ -26,6 +26,8 @@ TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
|
26 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
27 |
WIDTH = 512
|
28 |
HEIGHT = 512
|
|
|
|
|
29 |
|
30 |
# check if MPS is available OSX only M1/M2/M3 chips
|
31 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
@@ -58,9 +60,11 @@ else:
|
|
58 |
custom_pipeline="latent_consistency_img2img.py",
|
59 |
custom_revision="main",
|
60 |
)
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
pipe.set_progress_bar_config(disable=True)
|
65 |
pipe.to(torch_device=torch_device, torch_dtype=torch_dtype).to(device)
|
66 |
pipe.unet.to(memory_format=torch.channels_last)
|
@@ -89,9 +93,8 @@ class InputParams(BaseModel):
|
|
89 |
height: int = HEIGHT
|
90 |
|
91 |
|
92 |
-
def predict(input_image: Image.Image, params: InputParams):
|
93 |
generator = torch.manual_seed(params.seed)
|
94 |
-
prompt_embeds = compel_proc(params.prompt)
|
95 |
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
|
96 |
num_inference_steps = 3
|
97 |
results = pipe(
|
@@ -173,18 +176,25 @@ async def stream(user_id: uuid.UUID):
|
|
173 |
try:
|
174 |
user_queue = user_queue_map[uid]
|
175 |
queue = user_queue["queue"]
|
176 |
-
|
177 |
async def generate():
|
|
|
|
|
178 |
while True:
|
179 |
data = await queue.get()
|
180 |
input_image = data["image"]
|
181 |
params = data["params"]
|
182 |
if input_image is None:
|
183 |
continue
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
image = predict(
|
186 |
input_image,
|
187 |
params,
|
|
|
188 |
)
|
189 |
if image is None:
|
190 |
continue
|
|
|
26 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
27 |
WIDTH = 512
|
28 |
HEIGHT = 512
|
29 |
+
# disable tiny autoencoder for better quality speed tradeoff
|
30 |
+
USE_TINY_AUTOENCODER=True
|
31 |
|
32 |
# check if MPS is available OSX only M1/M2/M3 chips
|
33 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
|
|
60 |
custom_pipeline="latent_consistency_img2img.py",
|
61 |
custom_revision="main",
|
62 |
)
|
63 |
+
|
64 |
+
if USE_TINY_AUTOENCODER:
|
65 |
+
pipe.vae = AutoencoderTiny.from_pretrained(
|
66 |
+
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
67 |
+
)
|
68 |
pipe.set_progress_bar_config(disable=True)
|
69 |
pipe.to(torch_device=torch_device, torch_dtype=torch_dtype).to(device)
|
70 |
pipe.unet.to(memory_format=torch.channels_last)
|
|
|
93 |
height: int = HEIGHT
|
94 |
|
95 |
|
96 |
+
def predict(input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None):
|
97 |
generator = torch.manual_seed(params.seed)
|
|
|
98 |
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
|
99 |
num_inference_steps = 3
|
100 |
results = pipe(
|
|
|
176 |
try:
|
177 |
user_queue = user_queue_map[uid]
|
178 |
queue = user_queue["queue"]
|
|
|
179 |
async def generate():
|
180 |
+
last_prompt: str = None
|
181 |
+
prompt_embeds: torch.Tensor = None
|
182 |
while True:
|
183 |
data = await queue.get()
|
184 |
input_image = data["image"]
|
185 |
params = data["params"]
|
186 |
if input_image is None:
|
187 |
continue
|
188 |
+
# avoid recalculate prompt embeds
|
189 |
+
if last_prompt != params.prompt:
|
190 |
+
print("new prompt")
|
191 |
+
prompt_embeds = compel_proc(params.prompt)
|
192 |
+
last_prompt = params.prompt
|
193 |
|
194 |
image = predict(
|
195 |
input_image,
|
196 |
params,
|
197 |
+
prompt_embeds,
|
198 |
)
|
199 |
if image is None:
|
200 |
continue
|
app-txt2img.py
CHANGED
@@ -27,6 +27,9 @@ TIMEOUT = float(os.environ.get("TIMEOUT", 0))
|
|
27 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
28 |
WIDTH = 512
|
29 |
HEIGHT = 512
|
|
|
|
|
|
|
30 |
# check if MPS is available OSX only M1/M2/M3 chips
|
31 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -57,9 +60,10 @@ else:
|
|
57 |
custom_pipeline="latent_consistency_txt2img.py",
|
58 |
custom_revision="main",
|
59 |
)
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
pipe.set_progress_bar_config(disable=True)
|
64 |
pipe.to(torch_device=torch_device, torch_dtype=torch_dtype).to(device)
|
65 |
pipe.unet.to(memory_format=torch.channels_last)
|
@@ -68,9 +72,9 @@ pipe.unet.to(memory_format=torch.channels_last)
|
|
68 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
69 |
pipe.enable_attention_slicing()
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
compel_proc = Compel(
|
76 |
tokenizer=pipe.tokenizer,
|
|
|
27 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
28 |
WIDTH = 512
|
29 |
HEIGHT = 512
|
30 |
+
# disable tiny autoencoder for better quality speed tradeoff
|
31 |
+
USE_TINY_AUTOENCODER=True
|
32 |
+
|
33 |
# check if MPS is available OSX only M1/M2/M3 chips
|
34 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
60 |
custom_pipeline="latent_consistency_txt2img.py",
|
61 |
custom_revision="main",
|
62 |
)
|
63 |
+
if USE_TINY_AUTOENCODER:
|
64 |
+
pipe.vae = AutoencoderTiny.from_pretrained(
|
65 |
+
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
|
66 |
+
)
|
67 |
pipe.set_progress_bar_config(disable=True)
|
68 |
pipe.to(torch_device=torch_device, torch_dtype=torch_dtype).to(device)
|
69 |
pipe.unet.to(memory_format=torch.channels_last)
|
|
|
72 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
73 |
pipe.enable_attention_slicing()
|
74 |
|
75 |
+
if not mps_available:
|
76 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
77 |
+
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
78 |
|
79 |
compel_proc = Compel(
|
80 |
tokenizer=pipe.tokenizer,
|