Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
from transformers import pipeline
|
2 |
asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu")
|
|
|
3 |
from difflib import SequenceMatcher
|
4 |
import json
|
5 |
import socket
|
6 |
-
|
|
|
7 |
def get_local_ip():
|
8 |
try:
|
9 |
# Create a socket connection to a remote host (here, google.com)
|
@@ -50,6 +52,7 @@ def find_most_similar_command(statement, command_list):
|
|
50 |
return best_match,reply
|
51 |
|
52 |
transcript_only=["1","3","4"]
|
|
|
53 |
col_names={'1':"name",'3':"address",'4':"order"}
|
54 |
def send_data_to_db(menu_id,col_value,order_id):
|
55 |
import requests
|
@@ -71,19 +74,28 @@ def transcribe_the_command(audio,menu_id,order_id):
|
|
71 |
print(f"Local IP Address: {local_ip}")
|
72 |
else:
|
73 |
print("Local IP could not be determined.")
|
74 |
-
|
75 |
sample_rate, audio_data = audio
|
76 |
file_name = "recorded_audio.wav"
|
77 |
sf.write(file_name, audio_data, sample_rate)
|
78 |
# Convert stereo to mono by averaging the two channels
|
79 |
print(menu_id)
|
80 |
|
81 |
-
transcript = asr_pipe(file_name)["text"]
|
82 |
if menu_id in transcript_only:
|
|
|
83 |
col_value=transcript
|
84 |
send_data_to_db(menu_id,col_value,order_id)
|
85 |
print("data uploaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
else:
|
|
|
87 |
commands=urdu_data[menu_id]
|
88 |
print(commands)
|
89 |
most_similar_command,reply = find_most_similar_command(transcript, commands)
|
@@ -92,7 +104,6 @@ def transcribe_the_command(audio,menu_id,order_id):
|
|
92 |
print(reply)
|
93 |
return reply
|
94 |
# get_text_from_voice("urdu.wav")
|
95 |
-
import gradio as gr
|
96 |
|
97 |
|
98 |
iface = gr.Interface(
|
|
|
1 |
from transformers import pipeline
|
2 |
asr_pipe = pipeline("automatic-speech-recognition", model="Abdullah17/whisper-small-urdu")
|
3 |
+
transcript_pipe = pipeline("automatic-speech-recognition", model="ihanif/whisper-medium-urdu")
|
4 |
from difflib import SequenceMatcher
|
5 |
import json
|
6 |
import socket
|
7 |
+
import soundfile as sf
|
8 |
+
import gradio as gr
|
9 |
def get_local_ip():
|
10 |
try:
|
11 |
# Create a socket connection to a remote host (here, google.com)
|
|
|
52 |
return best_match,reply
|
53 |
|
54 |
transcript_only=["1","3","4"]
|
55 |
+
match_and_save=["2"]
|
56 |
col_names={'1':"name",'3':"address",'4':"order"}
|
57 |
def send_data_to_db(menu_id,col_value,order_id):
|
58 |
import requests
|
|
|
74 |
print(f"Local IP Address: {local_ip}")
|
75 |
else:
|
76 |
print("Local IP could not be determined.")
|
77 |
+
|
78 |
sample_rate, audio_data = audio
|
79 |
file_name = "recorded_audio.wav"
|
80 |
sf.write(file_name, audio_data, sample_rate)
|
81 |
# Convert stereo to mono by averaging the two channels
|
82 |
print(menu_id)
|
83 |
|
|
|
84 |
if menu_id in transcript_only:
|
85 |
+
transcript = transcript_pipe(file_name)["text"]
|
86 |
col_value=transcript
|
87 |
send_data_to_db(menu_id,col_value,order_id)
|
88 |
print("data uploaded successfully!")
|
89 |
+
elif menu_id in match_and_save:
|
90 |
+
transcript = asr_pipe(file_name)["text"]
|
91 |
+
commands=urdu_data[menu_id]
|
92 |
+
most_similar_command,reply = find_most_similar_command(transcript, commands)
|
93 |
+
print(f"Given Statement: {transcript}")
|
94 |
+
print(f"Most Similar Command: {most_similar_command}\n")
|
95 |
+
print(reply)
|
96 |
+
send_data_to_db(menu_id,reply,order_id)
|
97 |
else:
|
98 |
+
transcript = asr_pipe(file_name)["text"]
|
99 |
commands=urdu_data[menu_id]
|
100 |
print(commands)
|
101 |
most_similar_command,reply = find_most_similar_command(transcript, commands)
|
|
|
104 |
print(reply)
|
105 |
return reply
|
106 |
# get_text_from_voice("urdu.wav")
|
|
|
107 |
|
108 |
|
109 |
iface = gr.Interface(
|