Spaces:
Runtime error
Runtime error
Update the `app.py`
Browse files
app.py
CHANGED
@@ -8,13 +8,38 @@ from flores200_codes import flores_codes
|
|
8 |
|
9 |
def load_models():
|
10 |
# build model and tokenizer
|
11 |
-
model_name_dict = {
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
#'nllb-1.3B': 'facebook/nllb-200-1.3B',
|
15 |
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
|
16 |
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
|
17 |
-
# 'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
|
18 |
}
|
19 |
|
20 |
model_dict = {}
|
@@ -31,7 +56,7 @@ def load_models():
|
|
31 |
|
32 |
def translation(source, target, text):
|
33 |
if len(model_dict) == 2:
|
34 |
-
model_name = 'nllb-distilled-
|
35 |
|
36 |
start_time = time.time()
|
37 |
source = flores_codes[source]
|
@@ -53,6 +78,7 @@ def translation(source, target, text):
|
|
53 |
return result
|
54 |
|
55 |
|
|
|
56 |
if __name__ == '__main__':
|
57 |
print('\tinit models')
|
58 |
|
@@ -70,7 +96,7 @@ if __name__ == '__main__':
|
|
70 |
|
71 |
outputs = gr.outputs.JSON()
|
72 |
|
73 |
-
title = "NLLB distilled 600M demo
|
74 |
|
75 |
demo_status = "Demo is running on CPU"
|
76 |
description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}"
|
|
|
8 |
|
9 |
def load_models():
|
10 |
# build model and tokenizer
|
11 |
+
model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
|
12 |
+
#'nllb-1.3B': 'facebook/nllb-200-1.3B',
|
13 |
+
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
|
14 |
+
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
|
15 |
+
}
|
16 |
+
|
17 |
+
model_dict = {}
|
18 |
+
|
19 |
+
for call_name, real_name in model_name_dict.items():
|
20 |
+
print('\tLoading model: %s' % call_name)
|
21 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(real_name)
|
23 |
+
model_dict[call_name+'_model'] = model
|
24 |
+
model_dict[call_name+'_tokenizer'] = tokenizer
|
25 |
+
|
26 |
+
return model_dict
|
27 |
+
|
28 |
+
|
29 |
+
import os
|
30 |
+
import torch
|
31 |
+
import gradio as gr
|
32 |
+
import time
|
33 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
34 |
+
from flores200_codes import flores_codes
|
35 |
+
|
36 |
+
|
37 |
+
def load_models():
|
38 |
+
# build model and tokenizer
|
39 |
+
model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
|
40 |
#'nllb-1.3B': 'facebook/nllb-200-1.3B',
|
41 |
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
|
42 |
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
|
|
|
43 |
}
|
44 |
|
45 |
model_dict = {}
|
|
|
56 |
|
57 |
def translation(source, target, text):
|
58 |
if len(model_dict) == 2:
|
59 |
+
model_name = 'nllb-distilled-600M'
|
60 |
|
61 |
start_time = time.time()
|
62 |
source = flores_codes[source]
|
|
|
78 |
return result
|
79 |
|
80 |
|
81 |
+
|
82 |
if __name__ == '__main__':
|
83 |
print('\tinit models')
|
84 |
|
|
|
96 |
|
97 |
outputs = gr.outputs.JSON()
|
98 |
|
99 |
+
title = "NLLB distilled 600M demo"
|
100 |
|
101 |
demo_status = "Demo is running on CPU"
|
102 |
description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}"
|