Kevin Louis commited on
Commit
a7228f9
·
1 Parent(s): dfbb079

Upload update added scheduled logging

Browse files

Test commit to update app file with scheduled commit functions

Files changed (3) hide show
  1. app.py +27 -22
  2. helper.py +0 -17
  3. logger.py +54 -0
app.py CHANGED
@@ -1,22 +1,35 @@
 
 
 
1
  import gradio as gr
2
-
3
  import pandas as pd
4
- from datasets import Dataset
5
- from sentence_transformers import SentenceTransformer
6
  from parameter_extractor import ParameterExtractor
7
  from DNAseq import DNAseq
8
- from helper import list_at_index_0, list_at_index_1, logger
9
-
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  def chat_to_sequence(sequence, user_query):
12
 
13
- # Log information to a CSV file
14
- log_filename = "CTS_user_log.csv"
15
 
16
  # Sequence to be analysed/queried
17
  input_sequence = sequence
18
 
19
- # Set ParameterExtractor class expected variable
20
  dna = input_sequence
21
 
22
  # Model
@@ -113,23 +126,15 @@ def chat_to_sequence(sequence, user_query):
113
  proximal_upper_threshold,
114
  ]
115
 
116
- # Logger Testing Code
117
- user_log = pd.read_csv(log_filename)
118
- print(user_log.tail(3))
119
-
120
- # Flagged folder test code
121
- flagged_log = pd.read_csv("flagged/log.csv")
122
- print(flagged_log.tail(2))
123
-
124
  # Check the query score against threshold values
125
  if query_score >= proximal_upper_threshold:
126
  response = threshold_exceeded_message
127
- logger(log_filename, log_data, response)
128
  print(threshold_exceeded_message)
129
 
130
  elif proximal_lower_threshold < query_score < proximal_upper_threshold:
131
- response = threshold_approximate_message + "/n" + ref_question
132
- logger(log_filename, log_data, response)
133
  print(threshold_approximate_message, ref_question)
134
  else:
135
  print("Execute query")
@@ -144,11 +149,11 @@ def chat_to_sequence(sequence, user_query):
144
  function = matching_row.iloc[0]["function"]
145
  response = str(eval(function))
146
  code_descript_message = query_code_description.title()
147
- logger(log_filename, log_data, response)
148
  else:
149
  response = "Error processing query"
150
  query_code = "No Match Error"
151
- logger(log_filename, log_data, response)
152
  print("No matching code found for the function:", code)
153
 
154
  return response, code_descript_message
@@ -160,7 +165,7 @@ ChatToSequence = gr.Interface(
160
  inputs=[gr.Textbox(label="Sequence", placeholder="Input DNA Sequence..."),
161
  gr.Textbox(label="Query", placeholder="Input Query...")],
162
  outputs=[gr.Textbox(label="Response"), gr.Textbox(label="Action Executed")],
163
- allow_flagging="auto",
164
  title="Chat-To-Sequence",
165
  description="This Demo App Allows You To Explore Your DNA Sequence Using Natural Language",
166
  theme=gr.themes.Soft(),
 
1
+ from sentence_transformers import SentenceTransformer
2
+ from huggingface_hub import CommitScheduler
3
+ from datasets import Dataset
4
  import gradio as gr
 
5
  import pandas as pd
6
+
7
+
8
  from parameter_extractor import ParameterExtractor
9
  from DNAseq import DNAseq
10
+ from helper import list_at_index_0, list_at_index_1
11
+ from logger import cts_log_file_create, logger, cts_logger
12
+
13
+ # Create csv file for data logging
14
+ log_file_path = cts_log_file_create("flagged")
15
+
16
+ # Initialise CommitScheduler
17
+ scheduler = CommitScheduler(
18
+ repo_id="kevkev05/CTS-performance-metrics",
19
+ repo_type="dataset",
20
+ folder_path=log_file_path.parent,
21
+ path_in_repo="data",
22
+ every=5,
23
+ private=True,
24
+ )
25
 
26
  def chat_to_sequence(sequence, user_query):
27
 
 
 
28
 
29
  # Sequence to be analysed/queried
30
  input_sequence = sequence
31
 
32
+ # Set DNAseq class expected variable
33
  dna = input_sequence
34
 
35
  # Model
 
126
  proximal_upper_threshold,
127
  ]
128
 
 
 
 
 
 
 
 
 
129
  # Check the query score against threshold values
130
  if query_score >= proximal_upper_threshold:
131
  response = threshold_exceeded_message
132
+ cts_logger(scheduler, log_file_path, log_data, response)
133
  print(threshold_exceeded_message)
134
 
135
  elif proximal_lower_threshold < query_score < proximal_upper_threshold:
136
+ response = threshold_approximate_message + "\n" + ref_question
137
+ cts_logger(scheduler, log_file_path, log_data, response)
138
  print(threshold_approximate_message, ref_question)
139
  else:
140
  print("Execute query")
 
149
  function = matching_row.iloc[0]["function"]
150
  response = str(eval(function))
151
  code_descript_message = query_code_description.title()
152
+ cts_logger(scheduler, log_file_path, log_data, response)
153
  else:
154
  response = "Error processing query"
155
  query_code = "No Match Error"
156
+ cts_logger(scheduler, log_file_path, log_data, response)
157
  print("No matching code found for the function:", code)
158
 
159
  return response, code_descript_message
 
165
  inputs=[gr.Textbox(label="Sequence", placeholder="Input DNA Sequence..."),
166
  gr.Textbox(label="Query", placeholder="Input Query...")],
167
  outputs=[gr.Textbox(label="Response"), gr.Textbox(label="Action Executed")],
168
+ allow_flagging="never",
169
  title="Chat-To-Sequence",
170
  description="This Demo App Allows You To Explore Your DNA Sequence Using Natural Language",
171
  theme=gr.themes.Soft(),
helper.py CHANGED
@@ -1,5 +1,3 @@
1
- import csv
2
- import datetime
3
 
4
  def list_at_index(extracted_list, index):
5
  value_at_index = extracted_list[index]
@@ -17,18 +15,3 @@ def list_at_index_1(extracted_list):
17
  value_at_index = extracted_list[1]
18
 
19
  return value_at_index
20
-
21
- def logger(log_filename, log_data, response):
22
- with open(log_filename, mode='a', newline='') as log_file:
23
- log_writer = csv.writer(log_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
24
-
25
- # Get the current date and time
26
- current_datetime = datetime.datetime.now()
27
- date_str = current_datetime.strftime("%Y-%m-%d")
28
- time_str = current_datetime.strftime("%H:%M:%S")
29
- log_data.append(date_str)
30
- log_data.append(time_str)
31
- log_data.append(response)
32
- # Write the log data to the CSV file
33
- log_writer.writerow(log_data)
34
-
 
 
 
1
 
2
  def list_at_index(extracted_list, index):
3
  value_at_index = extracted_list[index]
 
15
  value_at_index = extracted_list[1]
16
 
17
  return value_at_index
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
logger.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import datetime
3
+ import uuid
4
+ from pathlib import Path
5
+
6
+
7
+ def cts_logger(scheduler, log_filename, log_data, response) -> None:
8
+ with scheduler.lock:
9
+ logger(log_filename, log_data, response)
10
+
11
+
12
+ def logger(log_filename, log_data, response):
13
+ with open(log_filename, mode='a', newline='') as log_file:
14
+ log_writer = csv.writer(log_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
15
+
16
+ # Get the current date and time
17
+ current_datetime = datetime.datetime.now()
18
+ date_str = current_datetime.strftime("%Y-%m-%d")
19
+ time_str = current_datetime.strftime("%H:%M:%S")
20
+ log_data.append(date_str)
21
+ log_data.append(time_str)
22
+ log_data.append(response)
23
+
24
+ # Write the log data to the CSV file
25
+ log_writer.writerow(log_data)
26
+
27
+
28
+ def cts_log_file_create(folder_name):
29
+ file_path = Path(folder_name + "/") / f"CTS_user_log{uuid.uuid4()}.csv"
30
+ with open(file_path, mode='a', newline='') as log_file:
31
+ log_writer = csv.writer(log_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
32
+
33
+ headers = [
34
+ "user_query",
35
+ "ref_question",
36
+ "query_score",
37
+ "code_executed",
38
+ "ref_question_2",
39
+ "query_score_2",
40
+ "ref_question_3",
41
+ "query_score_3",
42
+ "similarity_metric",
43
+ "model_used_for_embeddings",
44
+ "lower_threshold",
45
+ "upper_threshold",
46
+ "date",
47
+ "time",
48
+ "response",
49
+ ]
50
+
51
+ # Write headers to the CSV file
52
+ log_writer.writerow(headers)
53
+
54
+ return file_path