Spaces:
Runtime error
Runtime error
VictorSanh
commited on
Commit
·
dc6da18
1
Parent(s):
fd388f6
update with newest transformers integration
Browse files
app_dialogue.py
CHANGED
@@ -6,53 +6,37 @@ import time
|
|
6 |
import torch
|
7 |
|
8 |
from threading import Thread
|
9 |
-
from typing import List,
|
10 |
from urllib.parse import urlparse
|
11 |
from PIL import Image
|
12 |
|
13 |
import gradio as gr
|
14 |
-
from
|
15 |
-
from transformers import
|
16 |
-
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
17 |
-
from transformers.image_transforms import resize, to_channel_dimension_format
|
18 |
|
|
|
19 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
|
|
|
20 |
|
21 |
DEVICE = torch.device("cuda")
|
22 |
MODELS = {
|
23 |
-
"
|
24 |
-
"
|
25 |
-
trust_remote_code=True,
|
26 |
torch_dtype=torch.bfloat16,
|
27 |
-
|
28 |
-
revision="9e47f905a9e262451c749286fcb97516cedff6d3",
|
29 |
-
).to(DEVICE),
|
30 |
-
"tr_288_cinco_final_sft_sphinx - opt 11'000": AutoModelForCausalLM.from_pretrained(
|
31 |
-
"HuggingFaceM4/idefics2",
|
32 |
trust_remote_code=True,
|
33 |
-
torch_dtype=torch.bfloat16,
|
34 |
token=os.environ["HF_AUTH_TOKEN"],
|
35 |
-
revision="316ea4acf714760882ad89e364ae1f8c447ae82e",
|
36 |
).to(DEVICE),
|
37 |
-
# "285 - continued pretraining on text sft - opt 2'000": AutoModelForCausalLM.from_pretrained(
|
38 |
-
# "HuggingFaceM4/idefics2",
|
39 |
-
# trust_remote_code=True,
|
40 |
-
# torch_dtype=torch.bfloat16,
|
41 |
-
# token=os.environ["HF_AUTH_TOKEN"],
|
42 |
-
# revision="b0a2a564e5dc311591886bb375e8d5a1aeaade83",
|
43 |
-
# ).to(DEVICE),
|
44 |
}
|
45 |
PROCESSOR = AutoProcessor.from_pretrained(
|
46 |
-
"HuggingFaceM4/idefics2",
|
47 |
token=os.environ["HF_AUTH_TOKEN"],
|
48 |
)
|
49 |
-
FAKE_TOK_AROUND_IMAGE = "<fake_token_around_image>"
|
50 |
-
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
|
51 |
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
52 |
EOS_WORDS_IDS = PROCESSOR.tokenizer("<end_of_utterance>", add_special_tokens=False).input_ids + [PROCESSOR.tokenizer.eos_token_id]
|
53 |
-
IMAGE_SEQ_LEN = 64#list(MODELS.values())[0].config.perceiver_config.resampler_n_latents
|
54 |
|
55 |
-
SYSTEM_PROMPT = [
|
56 |
# """The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.
|
57 |
|
58 |
# The conversation begins:""",
|
@@ -83,127 +67,14 @@ API_TOKEN = os.getenv("HF_AUTH_TOKEN")
|
|
83 |
BOT_AVATAR = "IDEFICS_logo.png"
|
84 |
|
85 |
|
86 |
-
# Model processing utils - these will be handled in the model processor directly ultimately
|
87 |
-
def convert_to_rgb(image):
|
88 |
-
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
89 |
-
# for transparent images. The call to `alpha_composite` handles this case
|
90 |
-
if image.mode == "RGB":
|
91 |
-
return image
|
92 |
-
|
93 |
-
image_rgba = image.convert("RGBA")
|
94 |
-
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
95 |
-
alpha_composite = Image.alpha_composite(background, image_rgba)
|
96 |
-
alpha_composite = alpha_composite.convert("RGB")
|
97 |
-
return alpha_composite
|
98 |
-
|
99 |
-
|
100 |
-
def custom_transform(x):
|
101 |
-
x = convert_to_rgb(x)
|
102 |
-
x = to_numpy_array(x)
|
103 |
-
|
104 |
-
height, width = x.shape[:2]
|
105 |
-
aspect_ratio = width / height
|
106 |
-
if width >= height and width > 980:
|
107 |
-
width = 980
|
108 |
-
height = int(width / aspect_ratio)
|
109 |
-
elif height > width and height > 980:
|
110 |
-
height = 980
|
111 |
-
width = int(height * aspect_ratio)
|
112 |
-
width = max(width, 378)
|
113 |
-
height = max(height, 378)
|
114 |
-
|
115 |
-
x = resize(x, (height, width), resample=PILImageResampling.BILINEAR)
|
116 |
-
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
|
117 |
-
x = PROCESSOR.image_processor.normalize(
|
118 |
-
x,
|
119 |
-
mean=PROCESSOR.image_processor.image_mean,
|
120 |
-
std=PROCESSOR.image_processor.image_std
|
121 |
-
)
|
122 |
-
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
|
123 |
-
x = torch.tensor(x)
|
124 |
-
return x
|
125 |
-
|
126 |
-
|
127 |
-
def create_model_inputs(
|
128 |
-
input_texts: List[str],
|
129 |
-
image_lists: List[List[Image.Image]],
|
130 |
-
):
|
131 |
-
"""
|
132 |
-
All this logic will eventually be handled inside the model processor.
|
133 |
-
"""
|
134 |
-
inputs = PROCESSOR.tokenizer(
|
135 |
-
input_texts,
|
136 |
-
return_tensors="pt",
|
137 |
-
add_special_tokens=False,
|
138 |
-
padding=True,
|
139 |
-
)
|
140 |
-
|
141 |
-
output_images = [
|
142 |
-
[PROCESSOR.image_processor(img, transform=custom_transform) for img in im_list]
|
143 |
-
for im_list in image_lists
|
144 |
-
]
|
145 |
-
total_batch_size = len(output_images)
|
146 |
-
max_num_images = max([len(img_l) for img_l in output_images])
|
147 |
-
if max_num_images > 0:
|
148 |
-
max_height = max([i.size(2) for img_l in output_images for i in img_l])
|
149 |
-
max_width = max([i.size(3) for img_l in output_images for i in img_l])
|
150 |
-
padded_image_tensor = torch.zeros(total_batch_size, max_num_images, 3, max_height, max_width)
|
151 |
-
padded_pixel_attention_masks = torch.zeros(
|
152 |
-
total_batch_size, max_num_images, max_height, max_width, dtype=torch.bool
|
153 |
-
)
|
154 |
-
for batch_idx, img_l in enumerate(output_images):
|
155 |
-
for img_idx, img in enumerate(img_l):
|
156 |
-
im_height, im_width = img.size()[2:]
|
157 |
-
padded_image_tensor[batch_idx, img_idx, :, :im_height, :im_width] = img
|
158 |
-
padded_pixel_attention_masks[batch_idx, img_idx, :im_height, :im_width] = True
|
159 |
-
|
160 |
-
inputs["pixel_values"] = padded_image_tensor
|
161 |
-
inputs["pixel_attention_mask"] = padded_pixel_attention_masks
|
162 |
-
|
163 |
-
return inputs
|
164 |
-
|
165 |
-
|
166 |
# Chatbot utils
|
167 |
-
def is_image(string: str) -> bool:
|
168 |
-
"""
|
169 |
-
There are two ways for images: local image path or url.
|
170 |
-
"""
|
171 |
-
return is_url(string) or string.startswith(DEFAULT_TEMP_DIR)
|
172 |
-
|
173 |
-
|
174 |
-
def is_url(string: str) -> bool:
|
175 |
-
"""
|
176 |
-
Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
|
177 |
-
invalidated the url
|
178 |
-
"""
|
179 |
-
if " " in string:
|
180 |
-
return False
|
181 |
-
result = urlparse(string)
|
182 |
-
return all([result.scheme, result.netloc])
|
183 |
-
|
184 |
-
|
185 |
-
def prompt_list_to_model_input(prompt_list: List[str]) -> Tuple[str, List[Image.Image]]:
|
186 |
-
"""
|
187 |
-
Create the final input string and image list to feed to the model.
|
188 |
-
"""
|
189 |
-
images = []
|
190 |
-
for idx, part in enumerate(prompt_list):
|
191 |
-
if is_image(part):
|
192 |
-
images.append(Image.open(part))
|
193 |
-
prompt_list[idx] = f"{FAKE_TOK_AROUND_IMAGE}{'<image>' * IMAGE_SEQ_LEN}{FAKE_TOK_AROUND_IMAGE}"
|
194 |
-
input_text = "".join(prompt_list)
|
195 |
-
input_text = input_text.replace(FAKE_TOK_AROUND_IMAGE * 2, FAKE_TOK_AROUND_IMAGE)
|
196 |
-
input_text = BOS_TOKEN + input_text.strip()
|
197 |
-
return input_text, images
|
198 |
-
|
199 |
-
|
200 |
def turn_is_pure_media(turn):
|
201 |
return turn[1] is None
|
202 |
|
203 |
|
204 |
def format_user_prompt_with_im_history_and_system_conditioning(
|
205 |
user_prompt, chat_history
|
206 |
-
) -> List[str]:
|
207 |
"""
|
208 |
Produces the resulting list that needs to go inside the processor.
|
209 |
It handles the potential image(s), the history and the system conditionning.
|
@@ -212,30 +83,56 @@ def format_user_prompt_with_im_history_and_system_conditioning(
|
|
212 |
|
213 |
# Format history
|
214 |
for turn in chat_history:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
if turn_is_pure_media(turn):
|
216 |
media = turn[0][0]
|
217 |
-
|
218 |
-
resulting_list.append("\nUser:")
|
219 |
-
resulting_list.append(media)
|
220 |
else:
|
221 |
user_utterance, assistant_utterance = turn
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
226 |
|
227 |
# Format current input
|
228 |
if not user_prompt["files"]:
|
229 |
-
resulting_list.append(
|
|
|
|
|
|
|
|
|
|
|
230 |
else:
|
231 |
-
# Choosing to put the image first
|
232 |
-
resulting_list.append(
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
235 |
|
236 |
return resulting_list
|
237 |
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
@spaces.GPU(duration=180)
|
240 |
def model_inference(
|
241 |
user_prompt,
|
@@ -257,11 +154,6 @@ def model_inference(
|
|
257 |
if not file["mime_type"].startswith("image/"):
|
258 |
gr.Error("Idefics2 only supports images. Please input a valid image.")
|
259 |
|
260 |
-
formated_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
|
261 |
-
user_prompt=user_prompt,
|
262 |
-
chat_history=chat_history,
|
263 |
-
)
|
264 |
-
|
265 |
streamer = TextIteratorStreamer(
|
266 |
PROCESSOR.tokenizer,
|
267 |
skip_prompt=True,
|
@@ -289,37 +181,38 @@ def model_inference(
|
|
289 |
generation_args["do_sample"] = True
|
290 |
generation_args["top_p"] = top_p
|
291 |
|
292 |
-
|
293 |
# Creating model inputs
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
296 |
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
297 |
generation_args.update(inputs)
|
298 |
|
299 |
# # The regular non streaming generation mode
|
300 |
# _ = generation_args.pop("streamer")
|
301 |
# generated_ids = MODELS[model_selector].generate(**generation_args)
|
302 |
-
# generated_text = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
303 |
# return generated_text
|
304 |
|
|
|
305 |
thread = Thread(
|
306 |
target=MODELS[model_selector].generate,
|
307 |
kwargs=generation_args,
|
308 |
)
|
309 |
thread.start()
|
310 |
|
311 |
-
print("
|
312 |
acc_text = ""
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
print(f"Success! Generated the following sequence: `{acc_text}`")
|
322 |
-
|
323 |
|
324 |
|
325 |
# Hyper-parameters for generation
|
@@ -373,7 +266,7 @@ top_p = gr.Slider(
|
|
373 |
chatbot = gr.Chatbot(
|
374 |
label="IDEFICS2",
|
375 |
avatar_images=[None, BOT_AVATAR],
|
376 |
-
height=
|
377 |
)
|
378 |
|
379 |
|
|
|
6 |
import torch
|
7 |
|
8 |
from threading import Thread
|
9 |
+
from typing import List, Dict, Union
|
10 |
from urllib.parse import urlparse
|
11 |
from PIL import Image
|
12 |
|
13 |
import gradio as gr
|
14 |
+
from transformers import AutoProcessor, TextIteratorStreamer
|
15 |
+
from transformers import Idefics2ForConditionalGeneration
|
|
|
|
|
16 |
|
17 |
+
# Install flash attention
|
18 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
19 |
+
# Install private transformers fork which is the only place where idefics2 has been integrated at the time being
|
20 |
+
subprocess.run(f"pip install git+https://VictorSanh:{os.environ['TRANSFORMERS_NEW_MODEL_ADDITION_TOKEN']}@github.com/huggingface/new-model-addition.git@fae11925a79d34fb0a9d6562941cacc177bd3f53", shell=True)
|
21 |
|
22 |
DEVICE = torch.device("cuda")
|
23 |
MODELS = {
|
24 |
+
"idefics2-8b (sft)": Idefics2ForConditionalGeneration.from_pretrained(
|
25 |
+
"/fsx/m4/victor/idefics2-8b",
|
|
|
26 |
torch_dtype=torch.bfloat16,
|
27 |
+
_attn_implementation="flash_attention_2",
|
|
|
|
|
|
|
|
|
28 |
trust_remote_code=True,
|
|
|
29 |
token=os.environ["HF_AUTH_TOKEN"],
|
|
|
30 |
).to(DEVICE),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
}
|
32 |
PROCESSOR = AutoProcessor.from_pretrained(
|
33 |
+
"HuggingFaceM4/idefics2-tfrm-compatible",
|
34 |
token=os.environ["HF_AUTH_TOKEN"],
|
35 |
)
|
|
|
|
|
36 |
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
37 |
EOS_WORDS_IDS = PROCESSOR.tokenizer("<end_of_utterance>", add_special_tokens=False).input_ids + [PROCESSOR.tokenizer.eos_token_id]
|
|
|
38 |
|
39 |
+
SYSTEM_PROMPT = [ # Deactivating the system propmpt for now, but if I were to reactivate it, I would need to a/ transform turns into dict for applying the chat template, b/ manually overwrite the `default_template` to add the first line (that is not part of any turns), in particular for handling the bos_token.
|
40 |
# """The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.
|
41 |
|
42 |
# The conversation begins:""",
|
|
|
67 |
BOT_AVATAR = "IDEFICS_logo.png"
|
68 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# Chatbot utils
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def turn_is_pure_media(turn):
|
72 |
return turn[1] is None
|
73 |
|
74 |
|
75 |
def format_user_prompt_with_im_history_and_system_conditioning(
|
76 |
user_prompt, chat_history
|
77 |
+
) -> List[Dict[str, Union[List, str]]]:
|
78 |
"""
|
79 |
Produces the resulting list that needs to go inside the processor.
|
80 |
It handles the potential image(s), the history and the system conditionning.
|
|
|
83 |
|
84 |
# Format history
|
85 |
for turn in chat_history:
|
86 |
+
if not resulting_list or (resulting_list and resulting_list[-1]["role"] != "user"):
|
87 |
+
resulting_list.append(
|
88 |
+
{
|
89 |
+
"role": "user",
|
90 |
+
"content": [],
|
91 |
+
}
|
92 |
+
)
|
93 |
+
|
94 |
if turn_is_pure_media(turn):
|
95 |
media = turn[0][0]
|
96 |
+
resulting_list[-1]["content"].append(Image.open(media))
|
|
|
|
|
97 |
else:
|
98 |
user_utterance, assistant_utterance = turn
|
99 |
+
resulting_list[-1]["content"].append(user_utterance.strip())
|
100 |
+
resulting_list.append(
|
101 |
+
{
|
102 |
+
"role": "assistant",
|
103 |
+
"content": [assistant_utterance]
|
104 |
+
}
|
105 |
+
)
|
106 |
|
107 |
# Format current input
|
108 |
if not user_prompt["files"]:
|
109 |
+
resulting_list.append(
|
110 |
+
{
|
111 |
+
"role": "user",
|
112 |
+
"content": [user_prompt['text']],
|
113 |
+
}
|
114 |
+
)
|
115 |
else:
|
116 |
+
# Choosing to put the image first (i.e. before the text), but this is an arbiratrary choice.
|
117 |
+
resulting_list.append(
|
118 |
+
{
|
119 |
+
"role": "user",
|
120 |
+
"content": [Image.open(im['path']) for im in user_prompt['files']] + [user_prompt['text']],
|
121 |
+
}
|
122 |
+
)
|
123 |
|
124 |
return resulting_list
|
125 |
|
126 |
|
127 |
+
def extract_images_from_msg_list(msg_list):
|
128 |
+
all_images = []
|
129 |
+
for msg in msg_list:
|
130 |
+
for c_ in msg["content"]:
|
131 |
+
if isinstance(c_, Image.Image):
|
132 |
+
all_images.append(c_)
|
133 |
+
return all_images
|
134 |
+
|
135 |
+
|
136 |
@spaces.GPU(duration=180)
|
137 |
def model_inference(
|
138 |
user_prompt,
|
|
|
154 |
if not file["mime_type"].startswith("image/"):
|
155 |
gr.Error("Idefics2 only supports images. Please input a valid image.")
|
156 |
|
|
|
|
|
|
|
|
|
|
|
157 |
streamer = TextIteratorStreamer(
|
158 |
PROCESSOR.tokenizer,
|
159 |
skip_prompt=True,
|
|
|
181 |
generation_args["do_sample"] = True
|
182 |
generation_args["top_p"] = top_p
|
183 |
|
|
|
184 |
# Creating model inputs
|
185 |
+
formated_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
|
186 |
+
user_prompt=user_prompt,
|
187 |
+
chat_history=chat_history,
|
188 |
+
)
|
189 |
+
inputs = PROCESSOR.apply_chat_template(formated_prompt_list, add_generation_prompt=True, return_tensors="pt")
|
190 |
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
191 |
generation_args.update(inputs)
|
192 |
|
193 |
# # The regular non streaming generation mode
|
194 |
# _ = generation_args.pop("streamer")
|
195 |
# generated_ids = MODELS[model_selector].generate(**generation_args)
|
196 |
+
# generated_text = PROCESSOR.batch_decode(generated_ids[:, generation_args["input_ids"].size(-1): ], skip_special_tokens=True)[0]
|
197 |
# return generated_text
|
198 |
|
199 |
+
# The streaming generation mode
|
200 |
thread = Thread(
|
201 |
target=MODELS[model_selector].generate,
|
202 |
kwargs=generation_args,
|
203 |
)
|
204 |
thread.start()
|
205 |
|
206 |
+
print("Start generating")
|
207 |
acc_text = ""
|
208 |
+
for text_token in streamer:
|
209 |
+
time.sleep(0.04)
|
210 |
+
acc_text += text_token
|
211 |
+
if acc_text.endswith("<end_of_utterance>"):
|
212 |
+
acc_text = acc_text[:-18]
|
213 |
+
yield acc_text
|
214 |
+
print("Success - generated the following text:", acc_text)
|
215 |
+
print("-----")
|
|
|
|
|
216 |
|
217 |
|
218 |
# Hyper-parameters for generation
|
|
|
266 |
chatbot = gr.Chatbot(
|
267 |
label="IDEFICS2",
|
268 |
avatar_images=[None, BOT_AVATAR],
|
269 |
+
height=750,
|
270 |
)
|
271 |
|
272 |
|
old_app_dialogue.py → idefics1_app_dialogue.py
RENAMED
File without changes
|
the_updated_app_with_tfrm_integration.py → idefics2_old_app_dialogue.py
RENAMED
@@ -6,43 +6,53 @@ import time
|
|
6 |
import torch
|
7 |
|
8 |
from threading import Thread
|
9 |
-
from typing import List,
|
10 |
from urllib.parse import urlparse
|
11 |
from PIL import Image
|
12 |
|
13 |
import gradio as gr
|
14 |
-
from
|
15 |
-
from transformers import
|
|
|
|
|
16 |
|
17 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
18 |
|
19 |
DEVICE = torch.device("cuda")
|
20 |
MODELS = {
|
21 |
-
"
|
22 |
-
"HuggingFaceM4/idefics2
|
23 |
-
torch_dtype=torch.bfloat16,
|
24 |
-
_attn_implementation="flash_attention_2",
|
25 |
trust_remote_code=True,
|
|
|
26 |
token=os.environ["HF_AUTH_TOKEN"],
|
27 |
-
revision="
|
28 |
).to(DEVICE),
|
29 |
-
"
|
30 |
-
"HuggingFaceM4/idefics2
|
31 |
-
torch_dtype=torch.bfloat16,
|
32 |
-
_attn_implementation="flash_attention_2",
|
33 |
trust_remote_code=True,
|
|
|
34 |
token=os.environ["HF_AUTH_TOKEN"],
|
35 |
-
revision="
|
36 |
).to(DEVICE),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
PROCESSOR = AutoProcessor.from_pretrained(
|
39 |
-
"HuggingFaceM4/idefics2
|
40 |
token=os.environ["HF_AUTH_TOKEN"],
|
41 |
)
|
|
|
|
|
42 |
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
43 |
EOS_WORDS_IDS = PROCESSOR.tokenizer("<end_of_utterance>", add_special_tokens=False).input_ids + [PROCESSOR.tokenizer.eos_token_id]
|
|
|
44 |
|
45 |
-
SYSTEM_PROMPT = [
|
46 |
# """The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.
|
47 |
|
48 |
# The conversation begins:""",
|
@@ -73,14 +83,127 @@ API_TOKEN = os.getenv("HF_AUTH_TOKEN")
|
|
73 |
BOT_AVATAR = "IDEFICS_logo.png"
|
74 |
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Chatbot utils
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def turn_is_pure_media(turn):
|
78 |
return turn[1] is None
|
79 |
|
80 |
|
81 |
def format_user_prompt_with_im_history_and_system_conditioning(
|
82 |
user_prompt, chat_history
|
83 |
-
) -> List[
|
84 |
"""
|
85 |
Produces the resulting list that needs to go inside the processor.
|
86 |
It handles the potential image(s), the history and the system conditionning.
|
@@ -89,56 +212,30 @@ def format_user_prompt_with_im_history_and_system_conditioning(
|
|
89 |
|
90 |
# Format history
|
91 |
for turn in chat_history:
|
92 |
-
if not resulting_list or (resulting_list and resulting_list[-1]["role"] != "user"):
|
93 |
-
resulting_list.append(
|
94 |
-
{
|
95 |
-
"role": "user",
|
96 |
-
"content": [],
|
97 |
-
}
|
98 |
-
)
|
99 |
-
|
100 |
if turn_is_pure_media(turn):
|
101 |
media = turn[0][0]
|
102 |
-
resulting_list[-1]
|
|
|
|
|
103 |
else:
|
104 |
user_utterance, assistant_utterance = turn
|
105 |
-
resulting_list[-1]
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
"content": [assistant_utterance]
|
110 |
-
}
|
111 |
-
)
|
112 |
|
113 |
# Format current input
|
114 |
if not user_prompt["files"]:
|
115 |
-
resulting_list.append(
|
116 |
-
{
|
117 |
-
"role": "user",
|
118 |
-
"content": [user_prompt['text']],
|
119 |
-
}
|
120 |
-
)
|
121 |
else:
|
122 |
-
# Choosing to put the image first
|
123 |
-
resulting_list.append(
|
124 |
-
|
125 |
-
|
126 |
-
"content": [Image.open(im['path']) for im in user_prompt['files']] + [user_prompt['text']],
|
127 |
-
}
|
128 |
-
)
|
129 |
|
130 |
return resulting_list
|
131 |
|
132 |
|
133 |
-
def extract_images_from_msg_list(msg_list):
|
134 |
-
all_images = []
|
135 |
-
for msg in msg_list:
|
136 |
-
for c_ in msg["content"]:
|
137 |
-
if isinstance(c_, Image.Image):
|
138 |
-
all_images.append(c_)
|
139 |
-
return all_images
|
140 |
-
|
141 |
-
|
142 |
@spaces.GPU(duration=180)
|
143 |
def model_inference(
|
144 |
user_prompt,
|
@@ -160,6 +257,11 @@ def model_inference(
|
|
160 |
if not file["mime_type"].startswith("image/"):
|
161 |
gr.Error("Idefics2 only supports images. Please input a valid image.")
|
162 |
|
|
|
|
|
|
|
|
|
|
|
163 |
streamer = TextIteratorStreamer(
|
164 |
PROCESSOR.tokenizer,
|
165 |
skip_prompt=True,
|
@@ -187,22 +289,19 @@ def model_inference(
|
|
187 |
generation_args["do_sample"] = True
|
188 |
generation_args["top_p"] = top_p
|
189 |
|
|
|
190 |
# Creating model inputs
|
191 |
-
|
192 |
-
|
193 |
-
chat_history=chat_history,
|
194 |
-
)
|
195 |
-
inputs = PROCESSOR.apply_chat_template(formated_prompt_list, add_generation_prompt=True, return_tensors="pt")
|
196 |
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
197 |
generation_args.update(inputs)
|
198 |
|
199 |
# # The regular non streaming generation mode
|
200 |
# _ = generation_args.pop("streamer")
|
201 |
# generated_ids = MODELS[model_selector].generate(**generation_args)
|
202 |
-
# generated_text = PROCESSOR.batch_decode(generated_ids
|
203 |
# return generated_text
|
204 |
|
205 |
-
# The streaming generation mode
|
206 |
thread = Thread(
|
207 |
target=MODELS[model_selector].generate,
|
208 |
kwargs=generation_args,
|
@@ -211,13 +310,16 @@ def model_inference(
|
|
211 |
|
212 |
print("start generating")
|
213 |
acc_text = ""
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
221 |
|
222 |
|
223 |
# Hyper-parameters for generation
|
@@ -271,7 +373,7 @@ top_p = gr.Slider(
|
|
271 |
chatbot = gr.Chatbot(
|
272 |
label="IDEFICS2",
|
273 |
avatar_images=[None, BOT_AVATAR],
|
274 |
-
height=
|
275 |
)
|
276 |
|
277 |
|
|
|
6 |
import torch
|
7 |
|
8 |
from threading import Thread
|
9 |
+
from typing import List, Tuple
|
10 |
from urllib.parse import urlparse
|
11 |
from PIL import Image
|
12 |
|
13 |
import gradio as gr
|
14 |
+
from gradio_client.client import DEFAULT_TEMP_DIR
|
15 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer
|
16 |
+
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
17 |
+
from transformers.image_transforms import resize, to_channel_dimension_format
|
18 |
|
19 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
20 |
|
21 |
DEVICE = torch.device("cuda")
|
22 |
MODELS = {
|
23 |
+
"tr_290_bis_288_cinco_chatty - opt 150": AutoModelForCausalLM.from_pretrained(
|
24 |
+
"HuggingFaceM4/idefics2",
|
|
|
|
|
25 |
trust_remote_code=True,
|
26 |
+
torch_dtype=torch.bfloat16,
|
27 |
token=os.environ["HF_AUTH_TOKEN"],
|
28 |
+
revision="9e47f905a9e262451c749286fcb97516cedff6d3",
|
29 |
).to(DEVICE),
|
30 |
+
"tr_288_cinco_final_sft_sphinx - opt 11'000": AutoModelForCausalLM.from_pretrained(
|
31 |
+
"HuggingFaceM4/idefics2",
|
|
|
|
|
32 |
trust_remote_code=True,
|
33 |
+
torch_dtype=torch.bfloat16,
|
34 |
token=os.environ["HF_AUTH_TOKEN"],
|
35 |
+
revision="316ea4acf714760882ad89e364ae1f8c447ae82e",
|
36 |
).to(DEVICE),
|
37 |
+
# "285 - continued pretraining on text sft - opt 2'000": AutoModelForCausalLM.from_pretrained(
|
38 |
+
# "HuggingFaceM4/idefics2",
|
39 |
+
# trust_remote_code=True,
|
40 |
+
# torch_dtype=torch.bfloat16,
|
41 |
+
# token=os.environ["HF_AUTH_TOKEN"],
|
42 |
+
# revision="b0a2a564e5dc311591886bb375e8d5a1aeaade83",
|
43 |
+
# ).to(DEVICE),
|
44 |
}
|
45 |
PROCESSOR = AutoProcessor.from_pretrained(
|
46 |
+
"HuggingFaceM4/idefics2",
|
47 |
token=os.environ["HF_AUTH_TOKEN"],
|
48 |
)
|
49 |
+
FAKE_TOK_AROUND_IMAGE = "<fake_token_around_image>"
|
50 |
+
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
|
51 |
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
52 |
EOS_WORDS_IDS = PROCESSOR.tokenizer("<end_of_utterance>", add_special_tokens=False).input_ids + [PROCESSOR.tokenizer.eos_token_id]
|
53 |
+
IMAGE_SEQ_LEN = 64#list(MODELS.values())[0].config.perceiver_config.resampler_n_latents
|
54 |
|
55 |
+
SYSTEM_PROMPT = [
|
56 |
# """The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images and reason about the content of visual inputs. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth. When prompted with an image, it does not make up facts.
|
57 |
|
58 |
# The conversation begins:""",
|
|
|
83 |
BOT_AVATAR = "IDEFICS_logo.png"
|
84 |
|
85 |
|
86 |
+
# Model processing utils - these will be handled in the model processor directly ultimately
|
87 |
+
def convert_to_rgb(image):
|
88 |
+
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
89 |
+
# for transparent images. The call to `alpha_composite` handles this case
|
90 |
+
if image.mode == "RGB":
|
91 |
+
return image
|
92 |
+
|
93 |
+
image_rgba = image.convert("RGBA")
|
94 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
95 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
96 |
+
alpha_composite = alpha_composite.convert("RGB")
|
97 |
+
return alpha_composite
|
98 |
+
|
99 |
+
|
100 |
+
def custom_transform(x):
|
101 |
+
x = convert_to_rgb(x)
|
102 |
+
x = to_numpy_array(x)
|
103 |
+
|
104 |
+
height, width = x.shape[:2]
|
105 |
+
aspect_ratio = width / height
|
106 |
+
if width >= height and width > 980:
|
107 |
+
width = 980
|
108 |
+
height = int(width / aspect_ratio)
|
109 |
+
elif height > width and height > 980:
|
110 |
+
height = 980
|
111 |
+
width = int(height * aspect_ratio)
|
112 |
+
width = max(width, 378)
|
113 |
+
height = max(height, 378)
|
114 |
+
|
115 |
+
x = resize(x, (height, width), resample=PILImageResampling.BILINEAR)
|
116 |
+
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
|
117 |
+
x = PROCESSOR.image_processor.normalize(
|
118 |
+
x,
|
119 |
+
mean=PROCESSOR.image_processor.image_mean,
|
120 |
+
std=PROCESSOR.image_processor.image_std
|
121 |
+
)
|
122 |
+
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
|
123 |
+
x = torch.tensor(x)
|
124 |
+
return x
|
125 |
+
|
126 |
+
|
127 |
+
def create_model_inputs(
|
128 |
+
input_texts: List[str],
|
129 |
+
image_lists: List[List[Image.Image]],
|
130 |
+
):
|
131 |
+
"""
|
132 |
+
All this logic will eventually be handled inside the model processor.
|
133 |
+
"""
|
134 |
+
inputs = PROCESSOR.tokenizer(
|
135 |
+
input_texts,
|
136 |
+
return_tensors="pt",
|
137 |
+
add_special_tokens=False,
|
138 |
+
padding=True,
|
139 |
+
)
|
140 |
+
|
141 |
+
output_images = [
|
142 |
+
[PROCESSOR.image_processor(img, transform=custom_transform) for img in im_list]
|
143 |
+
for im_list in image_lists
|
144 |
+
]
|
145 |
+
total_batch_size = len(output_images)
|
146 |
+
max_num_images = max([len(img_l) for img_l in output_images])
|
147 |
+
if max_num_images > 0:
|
148 |
+
max_height = max([i.size(2) for img_l in output_images for i in img_l])
|
149 |
+
max_width = max([i.size(3) for img_l in output_images for i in img_l])
|
150 |
+
padded_image_tensor = torch.zeros(total_batch_size, max_num_images, 3, max_height, max_width)
|
151 |
+
padded_pixel_attention_masks = torch.zeros(
|
152 |
+
total_batch_size, max_num_images, max_height, max_width, dtype=torch.bool
|
153 |
+
)
|
154 |
+
for batch_idx, img_l in enumerate(output_images):
|
155 |
+
for img_idx, img in enumerate(img_l):
|
156 |
+
im_height, im_width = img.size()[2:]
|
157 |
+
padded_image_tensor[batch_idx, img_idx, :, :im_height, :im_width] = img
|
158 |
+
padded_pixel_attention_masks[batch_idx, img_idx, :im_height, :im_width] = True
|
159 |
+
|
160 |
+
inputs["pixel_values"] = padded_image_tensor
|
161 |
+
inputs["pixel_attention_mask"] = padded_pixel_attention_masks
|
162 |
+
|
163 |
+
return inputs
|
164 |
+
|
165 |
+
|
166 |
# Chatbot utils
|
167 |
+
def is_image(string: str) -> bool:
|
168 |
+
"""
|
169 |
+
There are two ways for images: local image path or url.
|
170 |
+
"""
|
171 |
+
return is_url(string) or string.startswith(DEFAULT_TEMP_DIR)
|
172 |
+
|
173 |
+
|
174 |
+
def is_url(string: str) -> bool:
|
175 |
+
"""
|
176 |
+
Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
|
177 |
+
invalidated the url
|
178 |
+
"""
|
179 |
+
if " " in string:
|
180 |
+
return False
|
181 |
+
result = urlparse(string)
|
182 |
+
return all([result.scheme, result.netloc])
|
183 |
+
|
184 |
+
|
185 |
+
def prompt_list_to_model_input(prompt_list: List[str]) -> Tuple[str, List[Image.Image]]:
|
186 |
+
"""
|
187 |
+
Create the final input string and image list to feed to the model.
|
188 |
+
"""
|
189 |
+
images = []
|
190 |
+
for idx, part in enumerate(prompt_list):
|
191 |
+
if is_image(part):
|
192 |
+
images.append(Image.open(part))
|
193 |
+
prompt_list[idx] = f"{FAKE_TOK_AROUND_IMAGE}{'<image>' * IMAGE_SEQ_LEN}{FAKE_TOK_AROUND_IMAGE}"
|
194 |
+
input_text = "".join(prompt_list)
|
195 |
+
input_text = input_text.replace(FAKE_TOK_AROUND_IMAGE * 2, FAKE_TOK_AROUND_IMAGE)
|
196 |
+
input_text = BOS_TOKEN + input_text.strip()
|
197 |
+
return input_text, images
|
198 |
+
|
199 |
+
|
200 |
def turn_is_pure_media(turn):
|
201 |
return turn[1] is None
|
202 |
|
203 |
|
204 |
def format_user_prompt_with_im_history_and_system_conditioning(
|
205 |
user_prompt, chat_history
|
206 |
+
) -> List[str]:
|
207 |
"""
|
208 |
Produces the resulting list that needs to go inside the processor.
|
209 |
It handles the potential image(s), the history and the system conditionning.
|
|
|
212 |
|
213 |
# Format history
|
214 |
for turn in chat_history:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
if turn_is_pure_media(turn):
|
216 |
media = turn[0][0]
|
217 |
+
if resulting_list == [] or (resulting_list != [] and resulting_list[-1].endswith("<end_of_utterance>")):
|
218 |
+
resulting_list.append("\nUser:")
|
219 |
+
resulting_list.append(media)
|
220 |
else:
|
221 |
user_utterance, assistant_utterance = turn
|
222 |
+
if resulting_list and is_image(resulting_list[-1]): # means that previous `turn` in `chat_history` was a pure media
|
223 |
+
resulting_list.append(f"{user_utterance.strip()}<end_of_utterance>\nAssistant: {assistant_utterance}<end_of_utterance>")
|
224 |
+
else:
|
225 |
+
resulting_list.append(f"\nUser: {user_utterance.strip()}<end_of_utterance>\nAssistant: {assistant_utterance}<end_of_utterance>")
|
|
|
|
|
|
|
226 |
|
227 |
# Format current input
|
228 |
if not user_prompt["files"]:
|
229 |
+
resulting_list.append(f"\nUser: ")
|
|
|
|
|
|
|
|
|
|
|
230 |
else:
|
231 |
+
# Choosing to put the image first when the image is inputted through the UI, but this is an arbiratrary choice.
|
232 |
+
resulting_list.append("\nUser:")
|
233 |
+
resulting_list.extend([im["path"] for im in user_prompt["files"]])
|
234 |
+
resulting_list.append(f"{user_prompt['text']}<end_of_utterance>\nAssistant:")
|
|
|
|
|
|
|
235 |
|
236 |
return resulting_list
|
237 |
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
@spaces.GPU(duration=180)
|
240 |
def model_inference(
|
241 |
user_prompt,
|
|
|
257 |
if not file["mime_type"].startswith("image/"):
|
258 |
gr.Error("Idefics2 only supports images. Please input a valid image.")
|
259 |
|
260 |
+
formated_prompt_list = format_user_prompt_with_im_history_and_system_conditioning(
|
261 |
+
user_prompt=user_prompt,
|
262 |
+
chat_history=chat_history,
|
263 |
+
)
|
264 |
+
|
265 |
streamer = TextIteratorStreamer(
|
266 |
PROCESSOR.tokenizer,
|
267 |
skip_prompt=True,
|
|
|
289 |
generation_args["do_sample"] = True
|
290 |
generation_args["top_p"] = top_p
|
291 |
|
292 |
+
|
293 |
# Creating model inputs
|
294 |
+
input_text, images = prompt_list_to_model_input(formated_prompt_list)
|
295 |
+
inputs = create_model_inputs([input_text], [images])
|
|
|
|
|
|
|
296 |
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
297 |
generation_args.update(inputs)
|
298 |
|
299 |
# # The regular non streaming generation mode
|
300 |
# _ = generation_args.pop("streamer")
|
301 |
# generated_ids = MODELS[model_selector].generate(**generation_args)
|
302 |
+
# generated_text = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
303 |
# return generated_text
|
304 |
|
|
|
305 |
thread = Thread(
|
306 |
target=MODELS[model_selector].generate,
|
307 |
kwargs=generation_args,
|
|
|
310 |
|
311 |
print("start generating")
|
312 |
acc_text = ""
|
313 |
+
try:
|
314 |
+
for text_token in streamer:
|
315 |
+
acc_text += text_token
|
316 |
+
time.sleep(0.03)
|
317 |
+
yield acc_text
|
318 |
+
except Exception as e:
|
319 |
+
print("error")
|
320 |
+
gr.Error(e)
|
321 |
+
print(f"Success! Generated the following sequence: `{acc_text}`")
|
322 |
+
|
323 |
|
324 |
|
325 |
# Hyper-parameters for generation
|
|
|
373 |
chatbot = gr.Chatbot(
|
374 |
label="IDEFICS2",
|
375 |
avatar_images=[None, BOT_AVATAR],
|
376 |
+
height=500,
|
377 |
)
|
378 |
|
379 |
|