import ast from collections import defaultdict from functools import partial import itertools import os import re from concurrent.futures import ThreadPoolExecutor import numpy as np from datetime import datetime from typing import Any import gradio as gr import pandas as pd from datatrove.io import DataFolder FALLBACK_TOKEN_NAME = "HF_TOKEN" def is_arary_like(x): return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray) def get_task_type(df): # Compatibility with old lighteval # [[Pour calculer le bénéfice net de C]] in new lighteval, "Pour calculer le bénéfice net de C" in old lighteval if all(isinstance(pred, str) or (is_arary_like(pred) and all(isinstance(item, str) for item in pred)) for pred in df['predictions'].iloc[0]): return "generative" # [["1", "2"], ["3", "4"]] in new lighteval, ["1", "2"] in old lighteval if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]): return "multiple_choice" return "mixed" def fix_df(df): # For some reason some metrics and predictions are stored as strings for col in ["predictions", "metrics", "choices", "gold", "gold_index"]: if col in df.columns: df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values] if col == "predictions": # For multiple choice df[col] = df[col].apply(lambda x: [[z[0] for z in x]] if is_arary_like(x) and len(x[0]) == 2 else x) # For unwraping of generative df[col] = df[col].apply(lambda x: x[0] if is_arary_like(x) and len(x) == 1 else x) return df def get_run_name_seed(run_name): if "-seed-" not in run_name: return run_name, 5 run_name, seed = run_name.split("-seed-") return run_name, int(seed) def fetch_repo_structure(results_uri, split_checkpoints=False, oauth_token: gr.OAuthToken | None = None): token = os.environ.get(FALLBACK_TOKEN_NAME) if oauth_token: token = oauth_token.token data_folder = DataFolder(results_uri, token=token) try: runs = [f.removeprefix("details/") for f in data_folder.list_files("details", recursive=False, include_directories=True) if f != "details"] except Exception as e: print(f"Error fetching repo structure: {e}") runs = [] if not runs: return {}, gr.update(choices=[], value=None) def process_run(run): run_files = [f.removeprefix(f"details/{run}/") for f in data_folder.list_files(f"details/{run}", recursive=False, include_directories=True) if f != f"details/{run}"] return run, run_files with ThreadPoolExecutor() as executor: results = list(executor.map(process_run, runs)) checkpoints_dict = dict(results) runs = list(checkpoints_dict.keys()) if not split_checkpoints: runs = [f"{run}/{checkpoint}" for run, checkpoints in checkpoints_dict.items() for checkpoint in checkpoints] return checkpoints_dict, gr.update(choices=runs, value=[]) def update_checkpoints(selected_runs, checkpoints, split_checkpoints): if not selected_runs or not split_checkpoints: return gr.update(choices=[], value=[]) common_checkpoints = set(checkpoints[selected_runs[0]]) for run in selected_runs[1:]: common_checkpoints.intersection_update(set(checkpoints[run])) common_checkpoints = sorted(list(common_checkpoints)) return gr.update(choices=common_checkpoints, value=[common_checkpoints[0]] if common_checkpoints else []) def select_runs_by_regex(runs, current_selected, regex_to_select): comp_re = re.compile(regex_to_select) return list(sorted(set((current_selected if current_selected else []) + [run for run in runs if comp_re.fullmatch(run)]))) def select_runs_by_language(runs, current_selected, language): if language: return select_runs_by_regex(runs, current_selected, f".*-{language}-.*") return current_selected def fetch_available_tasks(results_uri, selected_run_checkpoint: list[str]) -> dict[str, dict[str, str]]: token = os.environ.get(FALLBACK_TOKEN_NAME) data_folder = DataFolder(results_uri, token=token) all_tasks = defaultdict(lambda: defaultdict(dict)) for run_checkpoint in selected_run_checkpoint: try: details_folder = f"details/{run_checkpoint}" files = data_folder.list_files(details_folder, recursive=True) result_files = [f.removeprefix(details_folder + "/") for f in files if f.endswith('.parquet') or f.endswith('.json')] for full_filename in result_files: file_ext = '.parquet' if full_filename.endswith('.parquet') else '.json' # new lighteval has uses date/task_name_date, old lighteval uses task_name_date filename = full_filename.replace(file_ext, '').split("/")[-1] task_name, date_str = filename.rsplit('_', 1) date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f') if run_checkpoint not in all_tasks[task_name] or date > all_tasks[task_name][run_checkpoint]['date']: all_tasks[task_name][run_checkpoint] = {'filename': full_filename, 'date': date} except FileNotFoundError: print(f"Checkpoint not found for run: {run_checkpoint}") # Get tasks that have data for all selected runs available_tasks = { task: {run_checkpoint: info['filename'] for run_checkpoint, info in runs_info.items()} for task, runs_info in all_tasks.items() if set(runs_info.keys()) == set(selected_run_checkpoint) } return available_tasks def fetch_run_results(results_uri, selected_run_checkpoint: list[str], oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()): task_runs_dict = fetch_available_tasks(results_uri, selected_run_checkpoint) task_names = list(task_runs_dict.keys()) return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict def render_table(df: pd.DataFrame | None, selected_run_checkpoint: list[str], metric_names: list[str], filter_different: bool = False, n_samples: int = 100): if df is None or not selected_run_checkpoint or not metric_names: return None, "0" kept_metrics = [f"metric_{metric_name}_{run_checkpoint}" for run_checkpoint in selected_run_checkpoint for metric_name in metric_names] other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics] df = df.drop(columns=other_metrics) if filter_different: df = df[df.apply(lambda row: has_different_values(row, selected_run_checkpoint, metric_names), axis=1)] df = shorten_column_names(df, selected_run_checkpoint, metric_names) # Get total number of samples before limiting total_samples = len(df) # Take first n_samples instead of random sampling df = df.head(n_samples) # Get column widths for better display column_widths = get_column_widths(df) return gr.Dataframe( value=df, column_widths=column_widths ), str(total_samples) def update_selected_run_checkpoint(selected_runs: list[str] | None, selected_checkpoint: list[str] | None, split_checkpoints: bool): if not selected_runs: return [] # In this case we simply return the selected runs which already contain checkpoints if not split_checkpoints: return selected_runs # Otherwise combine runs with checkpoints return [f"{run}/{checkpoint}" for run in selected_runs for checkpoint in (selected_checkpoint if selected_checkpoint else [])] def get_column_widths(df): column_widths = [] for col in df.columns: if col == "prompt": column_widths.append("300px") # Fixed width with overflow elif col.startswith("generation_"): column_widths.append("200px") elif col in ["choices", "gold"]: column_widths.append("100px") else: # Metrics column_widths.append("50px") # Default width for other columns return column_widths def shorten_column_names(df, run_names: list[str], metric_names: list[str]): """ Turns metric columns (metric_{metric}_{run_name}) into {metric}_i Turns generation_{run_name} into generation_i Also truncates full_prompt and generation columns to 100 chars with expandable view """ # Handle metric columns columns_to_rename = {} for idx, run_name in enumerate(run_names): for metric_name in metric_names: original_metric_column = f"metric_{metric_name}_{run_name}" if original_metric_column in df.columns: columns_to_rename[original_metric_column] = f"{metric_name}_{idx}" original_generation_column = f"generation_{run_name}" if original_generation_column in df.columns: columns_to_rename[original_generation_column] = f"generation_{idx}" # Rename columns in a single operation df = df.rename(columns=columns_to_rename) # Add markdown formatting to prompt and generation columns for truncation with expansion def truncate_with_details(text: str | list[str]): if is_arary_like(text) and all(isinstance(item, str) for item in text): return [truncate_with_details(item) for item in text] elif isinstance(text, str): text = text.replace('\n', ' ').strip() # Replace newlines with spaces if len(text) <= 100: return text return f"""
{text[:100]}...\n\n{text[100:]}
""" return text if 'prompt' in df.columns: df['prompt'] = df['prompt'].apply(truncate_with_details) # Apply the same truncation to all generation columns generation_columns = [col for col in df.columns if col.startswith('generation_')] for col in generation_columns: df[col] = df[col].apply(truncate_with_details) return df def unwrap_selected_run_checkpoint(selected_run_checkpoint: list[str]) -> list[str]: return selected_run_checkpoint # Now just returns the list directly def load_task_data(results_uri, selected_run_checkpoint: list[str], task_name, tasks_files, prompt_column, progress=gr.Progress()): token = os.environ.get(FALLBACK_TOKEN_NAME) if not selected_run_checkpoint or not task_name: return None, None data_folder = DataFolder(f"filecache::{results_uri}", token=token, cache_storage="./results-cache") def fetch_run_file(run_checkpoint): file_path = f"details/{run_checkpoint}/{tasks_files[task_name][run_checkpoint]}" try: with data_folder.open(file_path, "rb") as f: if file_path.endswith('.parquet'): df = pd.read_parquet(f) else: df = pd.read_json(f, lines=True) return df, run_checkpoint except FileNotFoundError: print(f"File not found: {tasks_files[task_name][run_checkpoint]}") return None, run_checkpoint with ThreadPoolExecutor() as pool: results = list(progress.tqdm(pool.map(fetch_run_file, selected_run_checkpoint), total=len(selected_run_checkpoint), desc="Fetching run data...")) dfs = [fix_df(df) for df, _ in results if df is not None] run_names = [run for _, run in results if run is not None] if not dfs: return None, None, gr.update(choices=[], value=None) task_type = get_task_type(dfs[0]) def prepare_df(df, run_name, task_type, prompt_column): # Mixed in lighteval-old will look like this: ['광', -13.964999198913574, -13.539217948913574, -13.964999198913574, -13.539217948913574, -12.90467357635498, -13.07825756072998] # Generative in lighteval-old will look like this "prediction" # Multiple choice in lighteval-old will look like this ["choice1", "choice2"] # [np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-128.63824462890625), np.float64(-203.9550018310547), np.float64(-185.35267639160156), np.float64(-228.23837280273438)] # For the new lighteval we have: # Generative: [[Pour calculer le bénéfice net de C]] def get_choice_predictions(df, task_type): predictions = df['predictions'] if task_type == "generative": # This is strange representation in new lighteval... if is_arary_like(predictions) and all(is_arary_like(item) for item in predictions): return predictions[0] return predictions if task_type == "multiple_choice": n_choices = len(df['choices']) return [pred[0] for pred in predictions[:n_choices]] if task_type == "mixed": return predictions[0] return predictions generative_columns = { f"generation_{run_name}": df.apply(partial(get_choice_predictions, task_type=task_type), axis=1) } if task_type == "generative" or task_type == "mixed" else {} prepared_df = pd.DataFrame({ 'prompt': df[prompt_column], 'choices': df['choices'].apply(tuple), # Convert lists to tuples 'gold': df['gold'].apply(lambda x: tuple(x) if is_arary_like(x) else x), # Convert lists to tuples 'gold_index': df['gold_index'], **generative_columns, }) # For some reason some metrics are stored as strings metrics = df['metrics'] available_metrics = set(metric for row_metrics in metrics for metric in row_metrics) for metric_key in available_metrics: prepared_df[f'metric_{metric_key}_{run_name}'] = [metric.get(metric_key, None) for metric in metrics] # Merge rows with the same full_prompt prepared_df = prepared_df.groupby('prompt').agg(lambda x: next((item for item in x if item is not None), None)).reset_index() prepared_df["prompt"] = prepared_df["prompt"].astype(str) return prepared_df def get_gold_label(df, task_type): if task_type == "generative": return df['gold'] return df['gold_index'] # Prepare the first DataFrame with choices and gold # Join all prepared DataFrames prepared_dfs = [ prepare_df(df, run_name, task_type, prompt_column) for df, run_name in zip(dfs, run_names) ] combined_df = prepared_dfs[0] for idx, prepared_df in enumerate(prepared_dfs[1:]): combined_df = combined_df.merge(prepared_df, how='outer', on=("prompt", "gold"), suffixes=(None, f"_{idx}")) to_keep = ["prompt", "gold"] if task_type in ["multiple_choice", "mixed"]: to_keep.append("choices") elif task_type == "generative": to_keep.extend([col for col in combined_df.columns if col.startswith("generation_")]) combined_df['gold'] = combined_df.apply(lambda row: get_gold_label(row, task_type), axis=1).values metric_cols = [col for col in combined_df.columns if col.startswith("metric_")] combined_df = combined_df[to_keep + metric_cols] available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in metric_cols)) chosen_metrics = available_metrics[:1] return combined_df, gr.update(choices=available_metrics, value=chosen_metrics) def has_different_values(row: pd.Series, selected_run_checkpoint: list[str], metric_names: list[str]) -> bool: """Check if a row has different values across runs for any metric or generation.""" # Check generations generation_cols = [f"generation_{run}" for run in selected_run_checkpoint] generation_cols = [col for col in generation_cols if col in row.index] if generation_cols: generations = row[generation_cols].dropna() # Convert lists to tuples for comparison and handle string values unique_generations = set() for gen in generations: if isinstance(gen, list): unique_generations.add(tuple(gen)) else: unique_generations.add(gen) if len(unique_generations) > 1: return True # Check metrics for metric in metric_names: metric_cols = [f"metric_{metric}_{run}" for run in selected_run_checkpoint] metric_cols = [col for col in metric_cols if col in row.index] if metric_cols: metrics = row[metric_cols].dropna() if len(metrics.unique()) > 1: return True return False with gr.Blocks() as demo: available_runs_checkpoints = gr.State({}) results_df_full = gr.State(None) tasks_files = gr.State({}) selected_run_checkpoint = gr.State([]) login_button = gr.LoginButton(visible=False) results_uri = gr.Textbox(label="Fsspec results URI", value="s3://fineweb-multilingual-v1/evals/test/", visible=True, placeholder="s3://bucket/path/to/results") with gr.Column(): gr.Markdown("# FineWeb experiments results explorer") split_checkpoints = gr.Checkbox(label="Split checkpoints from models", value=True) with gr.Row(): with gr.Column(): select_by_regex_text = gr.Textbox(label="Regex to select runs", value="ind_minhash(-CC-MAIN-|_)\\d{4}-\\d{2}-seed.*") select_by_regex_button = gr.Button("Select matching runs") with gr.Column(): select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"], interactive=True, label="Select by language", info="Choose a language to prefill the regex") with gr.Row() as run_selection_row: selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs") checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint", multiselect=True) fetch_res = gr.Button("Fetch results") task_name = gr.Dropdown(choices=[], interactive=True, label="Task name") metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric") results_df = gr.Dataframe( interactive=False, wrap=True, line_breaks=True, datatype="markdown", column_widths=get_column_widths(pd.DataFrame()) # Initialize with empty dataframe ) with gr.Row(): with gr.Column(): num_samples = gr.Text(interactive=False, label="# Samples") prompt_column = gr.Radio(choices=["full_prompt", "example"], label="Prompt display", value="example") filter_different = gr.Checkbox(label="Show only samples with differences", value=False) n_samples_input = gr.Number(value=100, label="Number of samples to show", minimum=1, maximum=1000, step=1) # Run selection gr.on( triggers=[split_checkpoints.change], fn=lambda split_checkpoints: gr.update(visible=split_checkpoints), inputs=[split_checkpoints], outputs=[checkpoint] ) gr.on( triggers=[results_uri.change, split_checkpoints.change], fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs], ) gr.on( triggers=[select_by_regex_button.click], fn=select_runs_by_regex, inputs=[available_runs_checkpoints, selected_runs, select_by_regex_text], outputs=[selected_runs] ) gr.on( triggers=[select_by_language.change], fn=select_runs_by_language, inputs=[available_runs_checkpoints, selected_runs, select_by_language], outputs=[selected_runs] ) # Update checkpoints based on selected runs gr.on( triggers=[selected_runs.change], fn=update_checkpoints, inputs=[selected_runs, available_runs_checkpoints, split_checkpoints], outputs=[checkpoint] ) gr.on( triggers=[checkpoint.change, selected_runs.change], fn=update_selected_run_checkpoint, inputs=[selected_runs, checkpoint, split_checkpoints], outputs=[selected_run_checkpoint] ) # Fetch available tasks gr.on( triggers=[fetch_res.click], fn=fetch_run_results, inputs=[results_uri, selected_run_checkpoint], outputs=[task_name, tasks_files] ).then( fn=load_task_data, inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column], outputs=[results_df_full, metric_names] ).then( fn=render_table, inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input], outputs=[results_df, num_samples] ) # Update results when task name or metric changes gr.on( triggers=[task_name.input, prompt_column.input], fn=load_task_data, inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column], outputs=[results_df_full, metric_names] ).then( fn=render_table, inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input], outputs=[results_df, num_samples] ) gr.on( triggers=[metric_names.input, filter_different.change, n_samples_input.change], fn=render_table, inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input], outputs=[results_df, num_samples] ) demo.load(fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs]) demo.launch()