Spaces:
Sleeping
Sleeping
File size: 22,445 Bytes
2d9c70c a684ff8 2d9c70c 2ce0cc2 2d9c70c 90e7c81 f14f2bb 90e7c81 2d9c70c f14f2bb 2d9c70c 97e6937 da65ce9 90e7c81 da65ce9 90e7c81 2d9c70c f14f2bb 2d9c70c 2ce0cc2 6ecb679 2ce0cc2 2d9c70c 2ce0cc2 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c 2ce0cc2 2d9c70c 2ce0cc2 f14f2bb 2d9c70c f14f2bb e2f5761 85f65ce 2d9c70c 85f65ce 2d9c70c f14f2bb 85f65ce 2ce0cc2 f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 90e7c81 f14f2bb 2d9c70c a684ff8 f14f2bb 2ce0cc2 90e7c81 f14f2bb 2d9c70c a684ff8 f14f2bb 97e6937 a684ff8 f14f2bb a684ff8 f14f2bb 2d9c70c 90e7c81 f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c 97e6937 2d9c70c 97e6937 f14f2bb 2d9c70c 97e6937 2d9c70c 97e6937 90e7c81 f14f2bb 90e7c81 f14f2bb 90e7c81 2d9c70c f14f2bb 2d9c70c f14f2bb 90e7c81 2d9c70c 2ce0cc2 f14f2bb 2d9c70c 2ce0cc2 85f65ce f14f2bb 2ce0cc2 f14f2bb 2d9c70c f14f2bb 2d9c70c 90e7c81 f14f2bb 2d9c70c f14f2bb 2d9c70c 97e6937 2d9c70c 97e6937 2d9c70c 90e7c81 a684ff8 90e7c81 97e6937 2d9c70c 90e7c81 2d9c70c e2f5761 90e7c81 2d9c70c 97e6937 2d9c70c 90e7c81 97e6937 90e7c81 97e6937 90e7c81 2d9c70c 90e7c81 97e6937 2d9c70c 6a95b89 2d9c70c a684ff8 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c 4564048 2d9c70c 90e7c81 2d9c70c 90e7c81 2d9c70c 90e7c81 f14f2bb 2d9c70c 97e6937 90e7c81 f14f2bb 90e7c81 2ce0cc2 90e7c81 a684ff8 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c f14f2bb 2d9c70c 6a95b89 f14f2bb 6a95b89 a684ff8 2ce0cc2 2d9c70c f14f2bb 2d9c70c f14f2bb 6a95b89 a684ff8 2ce0cc2 2d9c70c a684ff8 97e6937 a684ff8 2ce0cc2 2d9c70c f14f2bb 2d9c70c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
import ast
from collections import defaultdict
from functools import partial
import itertools
import os
import re
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from datetime import datetime
from typing import Any
import gradio as gr
import pandas as pd
from datatrove.io import DataFolder
FALLBACK_TOKEN_NAME = "HF_TOKEN"
def is_arary_like(x):
return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray)
def get_task_type(df):
# Compatibility with old lighteval
# [[Pour calculer le bénéfice net de C]] in new lighteval, "Pour calculer le bénéfice net de C" in old lighteval
if all(isinstance(pred, str) or (is_arary_like(pred) and all(isinstance(item, str) for item in pred)) for pred in df['predictions'].iloc[0]):
return "generative"
# [["1", "2"], ["3", "4"]] in new lighteval, ["1", "2"] in old lighteval
if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]):
return "multiple_choice"
return "mixed"
def fix_df(df):
# For some reason some metrics and predictions are stored as strings
for col in ["predictions", "metrics", "choices", "gold", "gold_index"]:
if col in df.columns:
df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values]
if col == "predictions":
# For multiple choice
df[col] = df[col].apply(lambda x: [[z[0] for z in x]] if is_arary_like(x) and len(x[0]) == 2 else x)
# For unwraping of generative
df[col] = df[col].apply(lambda x: x[0] if is_arary_like(x) and len(x) == 1 else x)
return df
def get_run_name_seed(run_name):
if "-seed-" not in run_name:
return run_name, 5
run_name, seed = run_name.split("-seed-")
return run_name, int(seed)
def fetch_repo_structure(results_uri, split_checkpoints=False, oauth_token: gr.OAuthToken | None = None):
token = os.environ.get(FALLBACK_TOKEN_NAME)
if oauth_token:
token = oauth_token.token
data_folder = DataFolder(results_uri, token=token)
try:
runs = [f.removeprefix("details/") for f in data_folder.list_files("details", recursive=False, include_directories=True) if f != "details"]
except Exception as e:
print(f"Error fetching repo structure: {e}")
runs = []
if not runs:
return {}, gr.update(choices=[], value=None)
def process_run(run):
run_files = [f.removeprefix(f"details/{run}/") for f in data_folder.list_files(f"details/{run}", recursive=False, include_directories=True) if f != f"details/{run}"]
return run, run_files
with ThreadPoolExecutor() as executor:
results = list(executor.map(process_run, runs))
checkpoints_dict = dict(results)
runs = list(checkpoints_dict.keys())
if not split_checkpoints:
runs = [f"{run}/{checkpoint}" for run, checkpoints in checkpoints_dict.items() for checkpoint in checkpoints]
return checkpoints_dict, gr.update(choices=runs, value=[])
def update_checkpoints(selected_runs, checkpoints, split_checkpoints):
if not selected_runs or not split_checkpoints:
return gr.update(choices=[], value=[])
common_checkpoints = set(checkpoints[selected_runs[0]])
for run in selected_runs[1:]:
common_checkpoints.intersection_update(set(checkpoints[run]))
common_checkpoints = sorted(list(common_checkpoints))
return gr.update(choices=common_checkpoints, value=[common_checkpoints[0]] if common_checkpoints else [])
def select_runs_by_regex(runs, current_selected, regex_to_select):
comp_re = re.compile(regex_to_select)
return list(sorted(set((current_selected if current_selected else []) +
[run for run in runs if comp_re.fullmatch(run)])))
def select_runs_by_language(runs, current_selected, language):
if language:
return select_runs_by_regex(runs, current_selected, f".*-{language}-.*")
return current_selected
def fetch_available_tasks(results_uri, selected_run_checkpoint: list[str]) -> dict[str, dict[str, str]]:
token = os.environ.get(FALLBACK_TOKEN_NAME)
data_folder = DataFolder(results_uri, token=token)
all_tasks = defaultdict(lambda: defaultdict(dict))
for run_checkpoint in selected_run_checkpoint:
try:
details_folder = f"details/{run_checkpoint}"
files = data_folder.list_files(details_folder, recursive=True)
result_files = [f.removeprefix(details_folder + "/") for f in files if f.endswith('.parquet') or f.endswith('.json')]
for full_filename in result_files:
file_ext = '.parquet' if full_filename.endswith('.parquet') else '.json'
# new lighteval has uses date/task_name_date, old lighteval uses task_name_date
filename = full_filename.replace(file_ext, '').split("/")[-1]
task_name, date_str = filename.rsplit('_', 1)
date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f')
if run_checkpoint not in all_tasks[task_name] or date > all_tasks[task_name][run_checkpoint]['date']:
all_tasks[task_name][run_checkpoint] = {'filename': full_filename, 'date': date}
except FileNotFoundError:
print(f"Checkpoint not found for run: {run_checkpoint}")
# Get tasks that have data for all selected runs
available_tasks = {
task: {run_checkpoint: info['filename'] for run_checkpoint, info in runs_info.items()}
for task, runs_info in all_tasks.items()
if set(runs_info.keys()) == set(selected_run_checkpoint)
}
return available_tasks
def fetch_run_results(results_uri, selected_run_checkpoint: list[str],
oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()):
task_runs_dict = fetch_available_tasks(results_uri, selected_run_checkpoint)
task_names = list(task_runs_dict.keys())
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict
def render_table(df: pd.DataFrame | None, selected_run_checkpoint: list[str],
metric_names: list[str], filter_different: bool = False,
n_samples: int = 100):
if df is None or not selected_run_checkpoint or not metric_names:
return None, "0"
kept_metrics = [f"metric_{metric_name}_{run_checkpoint}"
for run_checkpoint in selected_run_checkpoint
for metric_name in metric_names]
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
df = df.drop(columns=other_metrics)
if filter_different:
df = df[df.apply(lambda row: has_different_values(row, selected_run_checkpoint, metric_names), axis=1)]
df = shorten_column_names(df, selected_run_checkpoint, metric_names)
# Get total number of samples before limiting
total_samples = len(df)
# Take first n_samples instead of random sampling
df = df.head(n_samples)
# Get column widths for better display
column_widths = get_column_widths(df)
return gr.Dataframe(
value=df,
column_widths=column_widths
), str(total_samples)
def update_selected_run_checkpoint(selected_runs: list[str] | None, selected_checkpoint: list[str] | None, split_checkpoints: bool):
if not selected_runs:
return []
# In this case we simply return the selected runs which already contain checkpoints
if not split_checkpoints:
return selected_runs
# Otherwise combine runs with checkpoints
return [f"{run}/{checkpoint}" for run in selected_runs for checkpoint in (selected_checkpoint if selected_checkpoint else [])]
def get_column_widths(df):
column_widths = []
for col in df.columns:
if col == "prompt":
column_widths.append("300px") # Fixed width with overflow
elif col.startswith("generation_"):
column_widths.append("200px")
elif col in ["choices", "gold"]:
column_widths.append("100px")
else:
# Metrics
column_widths.append("50px") # Default width for other columns
return column_widths
def shorten_column_names(df, run_names: list[str], metric_names: list[str]):
"""
Turns metric columns (metric_{metric}_{run_name}) into {metric}_i
Turns generation_{run_name} into generation_i
Also truncates full_prompt and generation columns to 100 chars with expandable view
"""
# Handle metric columns
columns_to_rename = {}
for idx, run_name in enumerate(run_names):
for metric_name in metric_names:
original_metric_column = f"metric_{metric_name}_{run_name}"
if original_metric_column in df.columns:
columns_to_rename[original_metric_column] = f"{metric_name}_{idx}"
original_generation_column = f"generation_{run_name}"
if original_generation_column in df.columns:
columns_to_rename[original_generation_column] = f"generation_{idx}"
# Rename columns in a single operation
df = df.rename(columns=columns_to_rename)
# Add markdown formatting to prompt and generation columns for truncation with expansion
def truncate_with_details(text: str | list[str]):
if is_arary_like(text) and all(isinstance(item, str) for item in text):
return [truncate_with_details(item) for item in text]
elif isinstance(text, str):
text = text.replace('\n', ' ').strip() # Replace newlines with spaces
if len(text) <= 100:
return text
return f"""<details><summary>{text[:100]}...</summary>\n\n{text[100:]}</details>"""
return text
if 'prompt' in df.columns:
df['prompt'] = df['prompt'].apply(truncate_with_details)
# Apply the same truncation to all generation columns
generation_columns = [col for col in df.columns if col.startswith('generation_')]
for col in generation_columns:
df[col] = df[col].apply(truncate_with_details)
return df
def unwrap_selected_run_checkpoint(selected_run_checkpoint: list[str]) -> list[str]:
return selected_run_checkpoint # Now just returns the list directly
def load_task_data(results_uri, selected_run_checkpoint: list[str], task_name, tasks_files, prompt_column, progress=gr.Progress()):
token = os.environ.get(FALLBACK_TOKEN_NAME)
if not selected_run_checkpoint or not task_name:
return None, None
data_folder = DataFolder(f"filecache::{results_uri}", token=token, cache_storage="./results-cache")
def fetch_run_file(run_checkpoint):
file_path = f"details/{run_checkpoint}/{tasks_files[task_name][run_checkpoint]}"
try:
with data_folder.open(file_path, "rb") as f:
if file_path.endswith('.parquet'):
df = pd.read_parquet(f)
else:
df = pd.read_json(f, lines=True)
return df, run_checkpoint
except FileNotFoundError:
print(f"File not found: {tasks_files[task_name][run_checkpoint]}")
return None, run_checkpoint
with ThreadPoolExecutor() as pool:
results = list(progress.tqdm(pool.map(fetch_run_file, selected_run_checkpoint),
total=len(selected_run_checkpoint),
desc="Fetching run data..."))
dfs = [fix_df(df) for df, _ in results if df is not None]
run_names = [run for _, run in results if run is not None]
if not dfs:
return None, None, gr.update(choices=[], value=None)
task_type = get_task_type(dfs[0])
def prepare_df(df, run_name, task_type, prompt_column):
# Mixed in lighteval-old will look like this: ['광', -13.964999198913574, -13.539217948913574, -13.964999198913574, -13.539217948913574, -12.90467357635498, -13.07825756072998]
# Generative in lighteval-old will look like this "prediction"
# Multiple choice in lighteval-old will look like this ["choice1", "choice2"]
# [np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-128.63824462890625), np.float64(-203.9550018310547), np.float64(-185.35267639160156), np.float64(-228.23837280273438)]
# For the new lighteval we have:
# Generative: [[Pour calculer le bénéfice net de C]]
def get_choice_predictions(df, task_type):
predictions = df['predictions']
if task_type == "generative":
# This is strange representation in new lighteval...
if is_arary_like(predictions) and all(is_arary_like(item) for item in predictions):
return predictions[0]
return predictions
if task_type == "multiple_choice":
n_choices = len(df['choices'])
return [pred[0] for pred in predictions[:n_choices]]
if task_type == "mixed":
return predictions[0]
return predictions
generative_columns = {
f"generation_{run_name}": df.apply(partial(get_choice_predictions, task_type=task_type), axis=1)
} if task_type == "generative" or task_type == "mixed" else {}
prepared_df = pd.DataFrame({
'prompt': df[prompt_column],
'choices': df['choices'].apply(tuple), # Convert lists to tuples
'gold': df['gold'].apply(lambda x: tuple(x) if is_arary_like(x) else x), # Convert lists to tuples
'gold_index': df['gold_index'],
**generative_columns,
})
# For some reason some metrics are stored as strings
metrics = df['metrics']
available_metrics = set(metric for row_metrics in metrics for metric in row_metrics)
for metric_key in available_metrics:
prepared_df[f'metric_{metric_key}_{run_name}'] = [metric.get(metric_key, None) for metric in metrics]
# Merge rows with the same full_prompt
prepared_df = prepared_df.groupby('prompt').agg(lambda x: next((item for item in x if item is not None), None)).reset_index()
prepared_df["prompt"] = prepared_df["prompt"].astype(str)
return prepared_df
def get_gold_label(df, task_type):
if task_type == "generative":
return df['gold']
return df['gold_index']
# Prepare the first DataFrame with choices and gold
# Join all prepared DataFrames
prepared_dfs = [
prepare_df(df, run_name, task_type, prompt_column)
for df, run_name in zip(dfs, run_names)
]
combined_df = prepared_dfs[0]
for idx, prepared_df in enumerate(prepared_dfs[1:]):
combined_df = combined_df.merge(prepared_df, how='outer', on=("prompt", "gold"), suffixes=(None, f"_{idx}"))
to_keep = ["prompt", "gold"]
if task_type in ["multiple_choice", "mixed"]:
to_keep.append("choices")
elif task_type == "generative":
to_keep.extend([col for col in combined_df.columns if col.startswith("generation_")])
combined_df['gold'] = combined_df.apply(lambda row: get_gold_label(row, task_type), axis=1).values
metric_cols = [col for col in combined_df.columns if col.startswith("metric_")]
combined_df = combined_df[to_keep + metric_cols]
available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in metric_cols))
chosen_metrics = available_metrics[:1]
return combined_df, gr.update(choices=available_metrics, value=chosen_metrics)
def has_different_values(row: pd.Series, selected_run_checkpoint: list[str], metric_names: list[str]) -> bool:
"""Check if a row has different values across runs for any metric or generation."""
# Check generations
generation_cols = [f"generation_{run}" for run in selected_run_checkpoint]
generation_cols = [col for col in generation_cols if col in row.index]
if generation_cols:
generations = row[generation_cols].dropna()
# Convert lists to tuples for comparison and handle string values
unique_generations = set()
for gen in generations:
if isinstance(gen, list):
unique_generations.add(tuple(gen))
else:
unique_generations.add(gen)
if len(unique_generations) > 1:
return True
# Check metrics
for metric in metric_names:
metric_cols = [f"metric_{metric}_{run}" for run in selected_run_checkpoint]
metric_cols = [col for col in metric_cols if col in row.index]
if metric_cols:
metrics = row[metric_cols].dropna()
if len(metrics.unique()) > 1:
return True
return False
with gr.Blocks() as demo:
available_runs_checkpoints = gr.State({})
results_df_full = gr.State(None)
tasks_files = gr.State({})
selected_run_checkpoint = gr.State([])
login_button = gr.LoginButton(visible=False)
results_uri = gr.Textbox(label="Fsspec results URI", value="s3://fineweb-v1/evals/test/", visible=True, placeholder="s3://bucket/path/to/results")
with gr.Column():
gr.Markdown("# FineWeb experiments results explorer")
split_checkpoints = gr.Checkbox(label="Split checkpoints from models", value=True)
with gr.Row():
with gr.Column():
select_by_regex_text = gr.Textbox(label="Regex to select runs",
value="ind_minhash(-CC-MAIN-|_)\\d{4}-\\d{2}-seed.*")
select_by_regex_button = gr.Button("Select matching runs")
with gr.Column():
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"],
interactive=True, label="Select by language",
info="Choose a language to prefill the regex")
with gr.Row() as run_selection_row:
selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs")
checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint", multiselect=True)
fetch_res = gr.Button("Fetch results")
task_name = gr.Dropdown(choices=[], interactive=True, label="Task name")
metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric")
results_df = gr.Dataframe(
interactive=False,
wrap=True,
line_breaks=True,
datatype="markdown",
column_widths=get_column_widths(pd.DataFrame()) # Initialize with empty dataframe
)
with gr.Row():
with gr.Column():
num_samples = gr.Text(interactive=False, label="# Samples")
prompt_column = gr.Radio(choices=["full_prompt", "example"], label="Prompt display", value="example")
filter_different = gr.Checkbox(label="Show only samples with differences", value=False)
n_samples_input = gr.Number(value=100, label="Number of samples to show", minimum=1, maximum=1000, step=1)
# Run selection
gr.on(
triggers=[split_checkpoints.change],
fn=lambda split_checkpoints: gr.update(visible=split_checkpoints),
inputs=[split_checkpoints],
outputs=[checkpoint]
)
gr.on(
triggers=[results_uri.change, split_checkpoints.change],
fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs],
)
gr.on(
triggers=[select_by_regex_button.click],
fn=select_runs_by_regex,
inputs=[available_runs_checkpoints, selected_runs, select_by_regex_text], outputs=[selected_runs]
)
gr.on(
triggers=[select_by_language.change],
fn=select_runs_by_language,
inputs=[available_runs_checkpoints, selected_runs, select_by_language], outputs=[selected_runs]
)
# Update checkpoints based on selected runs
gr.on(
triggers=[selected_runs.change],
fn=update_checkpoints,
inputs=[selected_runs, available_runs_checkpoints, split_checkpoints],
outputs=[checkpoint]
)
gr.on(
triggers=[checkpoint.change, selected_runs.change],
fn=update_selected_run_checkpoint,
inputs=[selected_runs, checkpoint, split_checkpoints],
outputs=[selected_run_checkpoint]
)
# Fetch available tasks
gr.on(
triggers=[fetch_res.click],
fn=fetch_run_results,
inputs=[results_uri, selected_run_checkpoint],
outputs=[task_name, tasks_files]
).then(
fn=load_task_data,
inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column],
outputs=[results_df_full, metric_names]
).then(
fn=render_table,
inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input],
outputs=[results_df, num_samples]
)
# Update results when task name or metric changes
gr.on(
triggers=[task_name.input, prompt_column.input],
fn=load_task_data,
inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column],
outputs=[results_df_full, metric_names]
).then(
fn=render_table,
inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input],
outputs=[results_df, num_samples]
)
gr.on(
triggers=[metric_names.input, filter_different.change, n_samples_input.change],
fn=render_table,
inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input],
outputs=[results_df, num_samples]
)
demo.load(fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs])
demo.launch() |