Spaces:
Runtime error
Runtime error
import json | |
import gradio as gr | |
import yolov5 | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
app_title = "License Plate Object Detection" | |
models_ids = ['keremberke/yolov5n-license-plate', 'keremberke/yolov5s-license-plate', 'keremberke/yolov5m-license-plate'] | |
article = f"<p style='text-align: center'> <a href='https://huggingface.co./{models_ids[-1]}'>model</a> | <a href='https://huggingface.co./keremberke/license-plate-object-detection'>dataset</a> | <a href='https://github.com/keremberke/awesome-yolov5-models'>awesome-yolov5-models</a> </p>" | |
current_model_id = models_ids[-1] | |
model = yolov5.load(current_model_id) | |
# examples = [['CarLongPlate686_jpg.rf.97172961f3f90ae6e4b0ef1edfa24b98.jpg', 0.25, 'keremberke/yolov5m-license-plate'], ['CarLongPlate834_jpg.rf.c6da1db4c7c6ce9d9d864a90bb46ff1d.jpg', 0.25, 'keremberke/yolov5m-license-plate'], ['CarLongPlateGen3663_jpg.rf.26f54b241dbee94a3faabc9a08fd638a.jpg', 0.25, 'keremberke/yolov5m-license-plate'], ['CarLongPlateGen570_jpg.rf.305252bdd2798c370af7f1d702c0dd97.jpg', 0.25, 'keremberke/yolov5m-license-plate'], ['xemay1024_jpg.rf.1d25cb47787faa4e72967cf4c356af2a.jpg', 0.25, 'keremberke/yolov5m-license-plate'], ['xemay1349_jpg.rf.759edbd383937d1fdc243203450a1823.jpg', 0.25, 'keremberke/yolov5m-license-plate']] | |
def predict(image, threshold=0.25, model_id=None): | |
# update model if required | |
global current_model_id | |
global model | |
if model_id != current_model_id: | |
model = yolov5.load(model_id) | |
current_model_id = model_id | |
# get model input size | |
config_path = hf_hub_download(repo_id=model_id, filename="config.json") | |
with open(config_path, "r") as f: | |
config = json.load(f) | |
input_size = config["input_size"] | |
# perform inference | |
model.conf = threshold | |
results = model(image, size=input_size) | |
numpy_image = results.render()[0] | |
output_image = Image.fromarray(numpy_image) | |
predictions = results.pred[0] | |
print(predictions[:, :4]) | |
#x1 = predictions[0] | |
#y1 = predictions[1] | |
#x2 = predictions[2] | |
#y2 = predictions[3] | |
#print(predictions) | |
#print("Das Kennzeichen befindet sich im Rechteck zwischen den folgenden Punkten:") | |
#print("X1: " + x1 + "Y1: " + y1) | |
#print("X2: " + x2 + "Y2: " + y2) | |
return output_image | |
gr.Interface( | |
title=app_title, | |
description="Created by 'keremberke'", | |
article=article, | |
fn=predict, | |
inputs=[ | |
gr.Image(type="pil"), | |
gr.Slider(maximum=1, step=0.01, value=0.25), | |
gr.Dropdown(models_ids, value=models_ids[-1]), | |
], | |
outputs=gr.Image(type="pil"), | |
# examples=examples, | |
# cache_examples=True if examples else False, | |
).launch(enable_queue=True) | |