Spaces:
Runtime error
Runtime error
import numpy as np | |
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision | |
from torchvision import transforms | |
from PIL import Image | |
title = "Super Resolution with CNN" | |
description = """ | |
Your low resolution image will be reconstructed to high resolution with a scale of 2 with a convolutional neural network!<br> | |
Detailed training and dataset can be found on my [github repo](https://github.com/susuhu/super-resolution).<br> | |
""" | |
article = """ | |
<div style='margin:20px auto;'> | |
<p>Sources:<p> | |
<p>π <a href="https://arxiv.org/abs/1501.00092">Image Super-Resolution Using Deep Convolutional Networks</a></p> | |
<p>π¦ Dataset <a href="https://github.com/eugenesiow/super-image-data">this GitHub repo</a></p> | |
</div> | |
""" | |
examples = [ | |
["LR_image.png"], | |
["barbara.png"], | |
] | |
class SRCNNModel(nn.Module): | |
def __init__(self): | |
super(SRCNNModel, self).__init__() | |
self.conv1 = nn.Conv2d(1, 64, 9, padding=4) | |
self.conv2 = nn.Conv2d(64, 32, 1, padding=0) | |
self.conv3 = nn.Conv2d(32, 1, 5, padding=2) | |
def forward(self, x): | |
out = F.relu(self.conv1(x)) | |
out = F.relu(self.conv2(out)) | |
out = self.conv3(out) | |
return out | |
def pred_SRCNN(model, image, device, scale_factor=2): | |
""" | |
model: SRCNN model | |
image: low resolution image PILLOW image | |
scale_factor: scale factor for resolution | |
device: cuda or cpu | |
""" | |
model.to(device) | |
model.eval() | |
# open image, gradio opens image as nparray | |
image = Image.fromarray(image) | |
# split channels | |
y, cb, cr = image.convert("YCbCr").split() | |
# size will be used in image transform | |
original_size = y.size | |
# bicubic interpolate it to the original size | |
y_bicubic = transforms.Resize( | |
(original_size[1] * scale_factor, original_size[0] * scale_factor), | |
interpolation=transforms.InterpolationMode.BICUBIC, | |
)(y) | |
cb_bicubic = transforms.Resize( | |
(original_size[1] * scale_factor, original_size[0] * scale_factor), | |
interpolation=transforms.InterpolationMode.BICUBIC, | |
)(cb) | |
cr_bicubic = transforms.Resize( | |
(original_size[1] * scale_factor, original_size[0] * scale_factor), | |
interpolation=transforms.InterpolationMode.BICUBIC, | |
)(cr) | |
# turn it into tensor and add batch dimension | |
y_bicubic = transforms.ToTensor()(y_bicubic).to(device).unsqueeze(0) | |
# get the y channel SRCNN prediction | |
y_pred = model(y_bicubic) | |
# convert it to numpy image | |
y_pred = y_pred[0].cpu().detach().numpy() | |
# convert it into regular image pixel values | |
y_pred = y_pred * 255 | |
y_pred.clip(0, 255) | |
# conver y channel from array to PIL image format for merging | |
y_pred_PIL = Image.fromarray(np.uint8(y_pred[0]), mode="L") | |
# merge the SRCNN y channel with cb cr channels | |
out_final = Image.merge("YCbCr", [y_pred_PIL, cb_bicubic, cr_bicubic]).convert( | |
"RGB" | |
) | |
image_bicubic = transforms.Resize( | |
(original_size[1] * scale_factor, original_size[0] * scale_factor), | |
interpolation=transforms.InterpolationMode.BICUBIC, | |
)(image) | |
return out_final, image_bicubic, image | |
# load model | |
# print("Loading SRCNN model...") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = SRCNNModel().to(device) | |
model.load_state_dict( | |
torch.load("SRCNNmodel_trained.pt", map_location=torch.device(device)) | |
) | |
model.eval() | |
# print("SRCNN model loaded!") | |
# def image_grid(imgs, rows, cols): | |
# ''' | |
# imgs:list of PILImage | |
# ''' | |
# assert len(imgs) == rows*cols | |
# w, h = imgs[0].size | |
# grid = Image.new('RGB', size=(cols*w, rows*h)) | |
# grid_w, grid_h = grid.size | |
# for i, img in enumerate(imgs): | |
# grid.paste(img, box=(i%cols*w, i//cols*h)) | |
# return grid | |
def super_reso(image): | |
# gradio open image as np array | |
#image_array = np.asarray(image_path) | |
#image = Image.fromarray(image_array, mode="RGB") | |
# prediction | |
with torch.no_grad(): | |
out_final, image_bicubic, image = pred_SRCNN( | |
model=model, image=image, device=device | |
) | |
# grid = image_grid([out_final,image_bicubic],1,2) | |
return out_final, image_bicubic | |
gr.Interface( | |
fn=super_reso, | |
inputs=gr.inputs.Image(label="Upload image"), | |
outputs=[ | |
gr.outputs.Image(label="Convolutional neural network"), | |
gr.outputs.Image(label="Bicubic interpoloation"), | |
], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
).launch() | |