import gradio as gr from transformers import MBart50TokenizerFast, MBartForConditionalGeneration # Load the fine-tuned model model_name = "abdulwaheed1/urdu_to_english_translation_mbart" tokenizer = MBart50TokenizerFast.from_pretrained(model_name, src_lang="ur_PK", tgt_lang="en_XX") model = MBartForConditionalGeneration.from_pretrained(model_name) def translate_urdu_to_english(text): # Tokenize the input text inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) # Generate translation outputs = model.generate(**inputs) # Decode the translated text translation = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] return translation # Create the Gradio interface iface = gr.Interface( fn=translate_urdu_to_english, inputs=gr.Textbox(label="Input Urdu Text"), outputs=gr.Textbox(label="Translated English Text"), title="Urdu to English Translation", description="Enter Urdu text to get the English translation." ) # Launch the app iface.launch()