Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
3 |
+
import json
|
4 |
+
|
5 |
+
# Load the dataset
|
6 |
+
with open('faq_dataset.json') as f:
|
7 |
+
faq_data = json.load(f)
|
8 |
+
|
9 |
+
# Initialize the model and tokenizer
|
10 |
+
model_name = "distilbert-base-uncased-distilled-squad"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
13 |
+
nlp = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
14 |
+
|
15 |
+
# Create a function to get answers
|
16 |
+
def get_answer(question):
|
17 |
+
for item in faq_data:
|
18 |
+
context = item['answer']
|
19 |
+
result = nlp(question=question, context=context)
|
20 |
+
if result['score'] > 0.5:
|
21 |
+
return result['answer']
|
22 |
+
return "Sorry, I don't know the answer to that question."
|
23 |
+
|
24 |
+
# Create the Gradio interface
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=get_answer,
|
27 |
+
inputs=gr.inputs.Textbox(label="Ask a Question"),
|
28 |
+
outputs=gr.outputs.Textbox(label="Answer"),
|
29 |
+
title="FAQ Chatbot",
|
30 |
+
description="Ask a question and get an answer from the FAQ dataset."
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch the interface
|
34 |
+
iface.launch()
|