RobustViT / tokencut_dataset.py
Hila's picture
init commit
7754b29
raw
history blame
4.74 kB
import json
from torch.utils import data
from torchvision.datasets import ImageFolder
import torch
import os
from PIL import Image
import numpy as np
import argparse
from tqdm import tqdm
from munkres import Munkres
import multiprocessing
from multiprocessing import Process, Manager
import collections
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import random
import torchvision
import cv2
torch.manual_seed(0)
SegItem = collections.namedtuple('SegItem', ('image_name', 'tag'))
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
TRANSFORM_TRAIN = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
])
TRANSFORM_EVAL = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
])
IMAGE_TRANSFORMS = transforms.Compose([
transforms.ToTensor(),
normalize
])
MERGED_TAGS = {'n04356056', 'n04355933',
'n04493381', 'n02808440',
'n03642806', 'n03832673',
'n04008634', 'n03773504',
'n03887697', 'n15075141'}
TRAIN_PARTITION = "train"
VAL_PARTITION = "val"
LEGAL_PARTITIONS = {TRAIN_PARTITION, VAL_PARTITION}
# TRAIN_CLASSES = 500
class SegmentationDataset(ImageFolder):
def __init__(self, seg_path, imagenet_path, partition=TRAIN_PARTITION, num_samples=2, train_classes=500
, imagenet_classes_path='imagenet_classes.json'):
assert partition in LEGAL_PARTITIONS
self._partition = partition
self._seg_path = seg_path
self._imagenet_path = imagenet_path
with open(imagenet_classes_path, 'r') as f:
self._imagenet_classes = json.load(f)
self._tag_list = [tag for tag in os.listdir(self._seg_path) if tag not in MERGED_TAGS]
if partition == TRAIN_PARTITION:
# Skip merged tags as those cause a headache
self._tag_list = self._tag_list[:train_classes]
elif partition == VAL_PARTITION:
# Skip merged tags as those cause a headache
self._tag_list = self._tag_list[train_classes:]
for tag in self._tag_list:
assert tag in self._imagenet_classes
self._all_segementations = []
for tag in self._tag_list:
base_dir = os.path.join(self._seg_path, tag)
curr_num_samples = 0
for i, seg in enumerate(os.listdir(base_dir)):
seg_name = seg.split('.')[0]
if 'bfs' not in seg_name:
continue
seg_path = os.path.join(self._seg_path, tag, seg)
seg_map = torch.load(seg_path)
seg_map = torch.from_numpy(seg_map.astype(np.float32))
if torch.sum(seg_map) < 520:
continue
if curr_num_samples >= num_samples:
break
self._all_segementations.append(SegItem(seg_name, tag))
curr_num_samples += 1
def __getitem__(self, item):
seg_item = self._all_segementations[item]
seg_path = os.path.join(self._seg_path, seg_item.tag, seg_item.image_name + ".pt")
image_path = os.path.join(self._imagenet_path, seg_item.image_name.split('_tokencut_bfs')[0] + ".JPEG")
image = Image.open(image_path)
image = image.convert('RGB')
seg_map = torch.load(seg_path)
seg_map = torch.from_numpy(seg_map.astype(np.float32))
# transforms - start
seg_map = seg_map.reshape(1, seg_map.shape[-2], seg_map.shape[-1])
resize = transforms.Resize(224)
image = resize(image)
if self._partition == VAL_PARTITION:
image = TRANSFORM_EVAL(image)
seg_map = TRANSFORM_EVAL(seg_map)
elif self._partition == TRAIN_PARTITION:
# Resize
resize = transforms.Resize(size=(256, 256))
image = resize(image)
seg_map = resize(seg_map)
# Random crop
i, j, h, w = transforms.RandomCrop.get_params(
image, output_size=(224, 224))
image = TF.crop(image, i, j, h, w)
seg_map = TF.crop(seg_map, i, j, h, w)
# RandomHorizontalFlip
if random.random() > 0.5:
image = TF.hflip(image)
seg_map = TF.hflip(seg_map)
else:
raise Exception(f"Unsupported partition type {self._partition}")
image_ten = IMAGE_TRANSFORMS(image)
# transforms - end
class_name = int(self._imagenet_classes[seg_item.tag])
return seg_map, image_ten, class_name
def __len__(self):
return len(self._all_segementations)