|
import torch |
|
import timm |
|
import gradio as gr |
|
from huggingface_hub import hf_hub_download |
|
import os |
|
from ViT.ViT_new import vit_base_patch16_224 as vit |
|
import torchvision.transforms as transforms |
|
import requests |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
|
|
|
|
|
|
def show_cam_on_image(img, mask): |
|
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET) |
|
heatmap = np.float32(heatmap) / 255 |
|
cam = heatmap + np.float32(img) |
|
cam = cam / np.max(cam) |
|
return cam |
|
|
|
start_layer = 0 |
|
|
|
|
|
def avg_heads(cam, grad): |
|
cam = cam.reshape(-1, cam.shape[-2], cam.shape[-1]) |
|
grad = grad.reshape(-1, grad.shape[-2], grad.shape[-1]) |
|
cam = grad * cam |
|
cam = cam.clamp(min=0).mean(dim=0) |
|
return cam |
|
|
|
|
|
def apply_self_attention_rules(R_ss, cam_ss): |
|
R_ss_addition = torch.matmul(cam_ss, R_ss) |
|
return R_ss_addition |
|
|
|
def generate_relevance(model, input, index=None): |
|
output = model(input, register_hook=True) |
|
if index == None: |
|
index = np.argmax(output.cpu().data.numpy(), axis=-1) |
|
|
|
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32) |
|
one_hot[0, index] = 1 |
|
one_hot_vector = one_hot |
|
one_hot = torch.from_numpy(one_hot).requires_grad_(True) |
|
one_hot = torch.sum(one_hot * output) |
|
model.zero_grad() |
|
one_hot.backward(retain_graph=True) |
|
|
|
num_tokens = model.blocks[0].attn.get_attention_map().shape[-1] |
|
R = torch.eye(num_tokens, num_tokens) |
|
for i,blk in enumerate(model.blocks): |
|
if i < start_layer: |
|
continue |
|
grad = blk.attn.get_attn_gradients() |
|
cam = blk.attn.get_attention_map() |
|
cam = avg_heads(cam, grad) |
|
R += apply_self_attention_rules(R, cam) |
|
return R[0, 1:] |
|
|
|
def generate_visualization(model, original_image, class_index=None): |
|
with torch.enable_grad(): |
|
transformer_attribution = generate_relevance(model, original_image.unsqueeze(0), index=class_index).detach() |
|
transformer_attribution = transformer_attribution.reshape(1, 1, 14, 14) |
|
transformer_attribution = torch.nn.functional.interpolate(transformer_attribution, scale_factor=16, mode='bilinear') |
|
transformer_attribution = transformer_attribution.reshape(224, 224).data.cpu().numpy() |
|
transformer_attribution = (transformer_attribution - transformer_attribution.min()) / (transformer_attribution.max() - transformer_attribution.min()) |
|
|
|
image_transformer_attribution = original_image.permute(1, 2, 0).data.cpu().numpy() |
|
image_transformer_attribution = (image_transformer_attribution - image_transformer_attribution.min()) / (image_transformer_attribution.max() - image_transformer_attribution.min()) |
|
vis = show_cam_on_image(image_transformer_attribution, transformer_attribution) |
|
vis = np.uint8(255 * vis) |
|
vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR) |
|
return vis |
|
|
|
model_finetuned = None |
|
|
|
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
transform_224 = transforms.Compose([ |
|
transforms.ToTensor(), |
|
normalize, |
|
]) |
|
|
|
|
|
response = requests.get("https://git.io/JJkYN") |
|
labels = response.text.split("\n") |
|
|
|
def image_classifier(inp): |
|
image = transform_224(inp) |
|
print(image.shape) |
|
|
|
with torch.no_grad(): |
|
prediction = torch.nn.functional.softmax(model_finetuned(image.unsqueeze(0))[0], dim=0) |
|
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} |
|
heatmap = generate_visualization(model_finetuned, image) |
|
return confidences, heatmap |
|
|
|
def _load_model(model_name: str): |
|
global model_finetuned |
|
path = hf_hub_download('Hila/RobustViT', |
|
f'{model_name}') |
|
|
|
model = vit(pretrained=True) |
|
model.eval() |
|
model_finetuned = vit() |
|
checkpoint = torch.load(path, map_location='cpu') |
|
model_finetuned.load_state_dict(checkpoint['state_dict']) |
|
model_finetuned.eval() |
|
|
|
_load_model('ar_base.tar') |
|
demo = gr.Interface(image_classifier, gr.inputs.Image(shape=(224,224)), [gr.outputs.Label(num_top_classes=3), gr.Image(shape=(224,224))],examples=["samples/augreg_base/tank.png", "samples/augreg_base/sundial.png", "samples/augreg_base/lizard.png", "samples/augreg_base/storck.png", "samples/augreg_base/hummingbird2.png", "samples/augreg_base/hummingbird.png"], capture_session=True) |
|
demo.launch(debug=True) |