Spaces:
Runtime error
Runtime error
File size: 37,229 Bytes
01c9658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 |
"""
This is the core file in the `gradio` package, and defines the Interface class,
including various methods for constructing an interface and then launching it.
"""
from __future__ import annotations
import inspect
import json
import os
import pkgutil
import re
import warnings
import weakref
from typing import TYPE_CHECKING, Any, Callable, List, Tuple
from markdown_it import MarkdownIt
from mdit_py_plugins.dollarmath.index import dollarmath_plugin
from mdit_py_plugins.footnote.index import footnote_plugin
from gradio import Examples, interpretation, utils
from gradio.blocks import Blocks
from gradio.components import (
Button,
Interpretation,
IOComponent,
Markdown,
State,
get_component_instance,
)
from gradio.data_classes import InterfaceTypes
from gradio.documentation import document, set_documentation_group
from gradio.events import Changeable, Streamable
from gradio.flagging import CSVLogger, FlaggingCallback, FlagMethod
from gradio.layouts import Column, Row, Tab, Tabs
from gradio.pipelines import load_from_pipeline
set_documentation_group("interface")
if TYPE_CHECKING: # Only import for type checking (is False at runtime).
from transformers.pipelines.base import Pipeline
@document("launch", "load", "from_pipeline", "integrate", "queue")
class Interface(Blocks):
"""
Interface is Gradio's main high-level class, and allows you to create a web-based GUI / demo
around a machine learning model (or any Python function) in a few lines of code.
You must specify three parameters: (1) the function to create a GUI for (2) the desired input components and
(3) the desired output components. Additional parameters can be used to control the appearance
and behavior of the demo.
Example:
import gradio as gr
def image_classifier(inp):
return {'cat': 0.3, 'dog': 0.7}
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
demo.launch()
Demos: hello_world, hello_world_3, gpt_j
Guides: quickstart, key_features, sharing_your_app, interface_state, reactive_interfaces, advanced_interface_features, setting_up_a_gradio_demo_for_maximum_performance
"""
# stores references to all currently existing Interface instances
instances: weakref.WeakSet = weakref.WeakSet()
@classmethod
def get_instances(cls) -> List[Interface]:
"""
:return: list of all current instances.
"""
return list(Interface.instances)
@classmethod
def load(
cls,
name: str,
src: str | None = None,
api_key: str | None = None,
alias: str | None = None,
**kwargs,
) -> Interface:
"""
Class method that constructs an Interface from a Hugging Face repo. Can accept
model repos (if src is "models") or Space repos (if src is "spaces"). The input
and output components are automatically loaded from the repo.
Parameters:
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
api_key: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co./settings/tokens
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
Returns:
a Gradio Interface object for the given model
Example:
import gradio as gr
description = "Story generation with GPT"
examples = [["An adventurer is approached by a mysterious stranger in the tavern for a new quest."]]
demo = gr.Interface.load("models/EleutherAI/gpt-neo-1.3B", description=description, examples=examples)
demo.launch()
"""
return super().load(name=name, src=src, api_key=api_key, alias=alias, **kwargs)
@classmethod
def from_pipeline(cls, pipeline: Pipeline, **kwargs) -> Interface:
"""
Class method that constructs an Interface from a Hugging Face transformers.Pipeline object.
The input and output components are automatically determined from the pipeline.
Parameters:
pipeline: the pipeline object to use.
Returns:
a Gradio Interface object from the given Pipeline
Example:
import gradio as gr
from transformers import pipeline
pipe = pipeline("image-classification")
gr.Interface.from_pipeline(pipe).launch()
"""
interface_info = load_from_pipeline(pipeline)
kwargs = dict(interface_info, **kwargs)
interface = cls(**kwargs)
return interface
def __init__(
self,
fn: Callable,
inputs: str | IOComponent | List[str | IOComponent] | None,
outputs: str | IOComponent | List[str | IOComponent] | None,
examples: List[Any] | List[List[Any]] | str | None = None,
cache_examples: bool | None = None,
examples_per_page: int = 10,
live: bool = False,
interpretation: Callable | str | None = None,
num_shap: float = 2.0,
title: str | None = None,
description: str | None = None,
article: str | None = None,
thumbnail: str | None = None,
theme: str = "default",
css: str | None = None,
allow_flagging: str | None = None,
flagging_options: List[str] | None = None,
flagging_dir: str = "flagged",
flagging_callback: FlaggingCallback = CSVLogger(),
analytics_enabled: bool | None = None,
batch: bool = False,
max_batch_size: int = 4,
_api_mode: bool = False,
**kwargs,
):
"""
Parameters:
fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: a single Gradio component, or list of Gradio components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of input components should match the number of parameters in fn. If set to None, then only the output components will be displayed.
outputs: a single Gradio component, or list of Gradio components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of output components should match the number of values returned by fn. If set to None, then only the input components will be displayed.
examples: sample inputs for the function; if provided, appear below the UI components and can be clicked to populate the interface. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component. A string path to a directory of examples can also be provided, but it should be within the directory with the python file running the gradio app. If there are multiple input components and a directory is provided, a log.csv file must be present in the directory to link corresponding inputs.
cache_examples: If True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
examples_per_page: If examples are provided, how many to display per page.
live: whether the interface should automatically rerun if any of the inputs change.
interpretation: function that provides interpretation explaining prediction output. Pass "default" to use simple built-in interpreter, "shap" to use a built-in shapley-based interpreter, or your own custom interpretation function. For more information on the different interpretation methods, see the Advanced Interface Features guide.
num_shap: a multiplier that determines how many examples are computed for shap-based interpretation. Increasing this value will increase shap runtime, but improve results. Only applies if interpretation is "shap".
title: a title for the interface; if provided, appears above the input and output components in large font. Also used as the tab title when opened in a browser window.
description: a description for the interface; if provided, appears above the input and output components and beneath the title in regular font. Accepts Markdown and HTML content.
article: an expanded article explaining the interface; if provided, appears below the input and output components in regular font. Accepts Markdown and HTML content.
thumbnail: path or url to image to use as display image when the web demo is shared on social media.
theme: Theme to use - right now, only "default" is supported. Can be set with the GRADIO_THEME environment variable.
css: custom css or path to custom css file to use with interface.
allow_flagging: one of "never", "auto", or "manual". If "never" or "auto", users will not see a button to flag an input and output. If "manual", users will see a button to flag. If "auto", every input the user submits will be automatically flagged (outputs are not flagged). If "manual", both the input and outputs are flagged when the user clicks flag button. This parameter can be set with environmental variable GRADIO_ALLOW_FLAGGING; otherwise defaults to "manual".
flagging_options: if provided, allows user to select from the list of options when flagging. Only applies if allow_flagging is "manual".
flagging_dir: what to name the directory where flagged data is stored.
flagging_callback: An instance of a subclass of FlaggingCallback which will be called when a sample is flagged. By default logs to a local CSV file.
analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
"""
super().__init__(
analytics_enabled=analytics_enabled,
mode="interface",
css=css,
title=title or "Gradio",
theme=theme,
**kwargs,
)
if isinstance(fn, list):
raise DeprecationWarning(
"The `fn` parameter only accepts a single function, support for a list "
"of functions has been deprecated. Please use gradio.mix.Parallel "
"instead."
)
self.interface_type = InterfaceTypes.STANDARD
if (inputs is None or inputs == []) and (outputs is None or outputs == []):
raise ValueError("Must provide at least one of `inputs` or `outputs`")
elif outputs is None or outputs == []:
outputs = []
self.interface_type = InterfaceTypes.INPUT_ONLY
elif inputs is None or inputs == []:
inputs = []
self.interface_type = InterfaceTypes.OUTPUT_ONLY
assert isinstance(inputs, (str, list, IOComponent))
assert isinstance(outputs, (str, list, IOComponent))
if not isinstance(inputs, list):
inputs = [inputs]
if not isinstance(outputs, list):
outputs = [outputs]
if self.is_space and cache_examples is None:
self.cache_examples = True
else:
self.cache_examples = cache_examples or False
state_input_indexes = [
idx for idx, i in enumerate(inputs) if i == "state" or isinstance(i, State)
]
state_output_indexes = [
idx for idx, o in enumerate(outputs) if o == "state" or isinstance(o, State)
]
if len(state_input_indexes) == 0 and len(state_output_indexes) == 0:
pass
elif len(state_input_indexes) != 1 or len(state_output_indexes) != 1:
raise ValueError(
"If using 'state', there must be exactly one state input and one state output."
)
else:
state_input_index = state_input_indexes[0]
state_output_index = state_output_indexes[0]
if inputs[state_input_index] == "state":
default = utils.get_default_args(fn)[state_input_index]
state_variable = State(value=default) # type: ignore
else:
state_variable = inputs[state_input_index]
inputs[state_input_index] = state_variable
outputs[state_output_index] = state_variable
if cache_examples:
warnings.warn(
"Cache examples cannot be used with state inputs and outputs."
"Setting cache_examples to False."
)
self.cache_examples = False
self.input_components = [
get_component_instance(i, render=False) for i in inputs
]
self.output_components = [
get_component_instance(o, render=False) for o in outputs
]
for component in self.input_components + self.output_components:
if not (isinstance(component, IOComponent)):
raise ValueError(
f"{component} is not a valid input/output component for Interface."
)
if len(self.input_components) == len(self.output_components):
same_components = [
i is o for i, o in zip(self.input_components, self.output_components)
]
if all(same_components):
self.interface_type = InterfaceTypes.UNIFIED
if self.interface_type in [
InterfaceTypes.STANDARD,
InterfaceTypes.OUTPUT_ONLY,
]:
for o in self.output_components:
assert isinstance(o, IOComponent)
o.interactive = False # Force output components to be non-interactive
if (
interpretation is None
or isinstance(interpretation, list)
or callable(interpretation)
):
self.interpretation = interpretation
elif isinstance(interpretation, str):
self.interpretation = [
interpretation.lower() for _ in self.input_components
]
else:
raise ValueError("Invalid value for parameter: interpretation")
self.api_mode = _api_mode
self.fn = fn
self.fn_durations = [0, 0]
self.__name__ = getattr(fn, "__name__", "fn")
self.live = live
self.title = title
CLEANER = re.compile("<.*?>")
def clean_html(raw_html):
cleantext = re.sub(CLEANER, "", raw_html)
return cleantext
md = (
MarkdownIt(
"js-default",
{
"linkify": True,
"typographer": True,
"html": True,
},
)
.use(dollarmath_plugin)
.use(footnote_plugin)
.enable("table")
)
simple_description = None
if description is not None:
description = md.render(description)
simple_description = clean_html(description)
self.simple_description = simple_description
self.description = description
if article is not None:
article = utils.readme_to_html(article)
article = md.render(article)
self.article = article
self.thumbnail = thumbnail
self.theme = theme or os.getenv("GRADIO_THEME", "default")
if not (self.theme == "default"):
warnings.warn("Currently, only the 'default' theme is supported.")
self.examples = examples
self.num_shap = num_shap
self.examples_per_page = examples_per_page
self.simple_server = None
# For analytics_enabled and allow_flagging: (1) first check for
# parameter, (2) check for env variable, (3) default to True/"manual"
self.analytics_enabled = (
analytics_enabled
if analytics_enabled is not None
else os.getenv("GRADIO_ANALYTICS_ENABLED", "True") == "True"
)
if allow_flagging is None:
allow_flagging = os.getenv("GRADIO_ALLOW_FLAGGING", "manual")
if allow_flagging is True:
warnings.warn(
"The `allow_flagging` parameter in `Interface` now"
"takes a string value ('auto', 'manual', or 'never')"
", not a boolean. Setting parameter to: 'manual'."
)
self.allow_flagging = "manual"
elif allow_flagging == "manual":
self.allow_flagging = "manual"
elif allow_flagging is False:
warnings.warn(
"The `allow_flagging` parameter in `Interface` now"
"takes a string value ('auto', 'manual', or 'never')"
", not a boolean. Setting parameter to: 'never'."
)
self.allow_flagging = "never"
elif allow_flagging == "never":
self.allow_flagging = "never"
elif allow_flagging == "auto":
self.allow_flagging = "auto"
else:
raise ValueError(
"Invalid value for `allow_flagging` parameter."
"Must be: 'auto', 'manual', or 'never'."
)
self.flagging_options = flagging_options
self.flagging_callback = flagging_callback
self.flagging_dir = flagging_dir
self.batch = batch
self.max_batch_size = max_batch_size
self.save_to = None # Used for selenium tests
self.share = None
self.share_url = None
self.local_url = None
self.favicon_path = None
if self.analytics_enabled:
data = {
"mode": self.mode,
"fn": fn,
"inputs": inputs,
"outputs": outputs,
"live": live,
"ip_address": self.ip_address,
"interpretation": interpretation,
"allow_flagging": allow_flagging,
"custom_css": self.css is not None,
"theme": self.theme,
"version": (pkgutil.get_data(__name__, "version.txt") or b"")
.decode("ascii")
.strip(),
}
utils.initiated_analytics(data)
utils.version_check()
Interface.instances.add(self)
param_names = inspect.getfullargspec(self.fn)[0]
for component, param_name in zip(self.input_components, param_names):
assert isinstance(component, IOComponent)
if component.label is None:
component.label = param_name
for i, component in enumerate(self.output_components):
assert isinstance(component, IOComponent)
if component.label is None:
if len(self.output_components) == 1:
component.label = "output"
else:
component.label = "output " + str(i)
if self.allow_flagging != "never":
if (
self.interface_type == InterfaceTypes.UNIFIED
or self.allow_flagging == "auto"
):
self.flagging_callback.setup(self.input_components, self.flagging_dir) # type: ignore
elif self.interface_type == InterfaceTypes.INPUT_ONLY:
pass
else:
self.flagging_callback.setup(
self.input_components + self.output_components, self.flagging_dir # type: ignore
)
# Render the Gradio UI
with self:
self.render_title_description()
submit_btn, clear_btn, stop_btn, flag_btns = None, None, None, None
interpretation_btn, interpretation_set = None, None
input_component_column, interpret_component_column = None, None
with Row().style(equal_height=False):
if self.interface_type in [
InterfaceTypes.STANDARD,
InterfaceTypes.INPUT_ONLY,
InterfaceTypes.UNIFIED,
]:
(
submit_btn,
clear_btn,
stop_btn,
flag_btns,
input_component_column,
interpret_component_column,
interpretation_set,
) = self.render_input_column()
if self.interface_type in [
InterfaceTypes.STANDARD,
InterfaceTypes.OUTPUT_ONLY,
]:
(
submit_btn_out,
clear_btn_2_out,
stop_btn_2_out,
flag_btns_out,
interpretation_btn,
) = self.render_output_column(submit_btn)
submit_btn = submit_btn or submit_btn_out
clear_btn = clear_btn or clear_btn_2_out
stop_btn = stop_btn or stop_btn_2_out
flag_btns = flag_btns or flag_btns_out
assert clear_btn is not None, "Clear button not rendered"
self.attach_submit_events(submit_btn, stop_btn)
self.attach_clear_events(
clear_btn, input_component_column, interpret_component_column
)
self.attach_interpretation_events(
interpretation_btn,
interpretation_set,
input_component_column,
interpret_component_column,
)
self.render_flagging_buttons(flag_btns)
self.render_examples()
self.render_article()
self.config = self.get_config_file()
def render_title_description(self) -> None:
if self.title:
Markdown(
"<h1 style='text-align: center; margin-bottom: 1rem'>"
+ self.title
+ "</h1>"
)
if self.description:
Markdown(self.description)
def render_flag_btns(self) -> List[Tuple[Button, str | None]]:
if self.flagging_options is None:
return [(Button("Flag"), None)]
else:
return [
(
Button("Flag as " + flag_option),
flag_option,
)
for flag_option in self.flagging_options
]
def render_input_column(
self,
) -> Tuple[
Button | None,
Button | None,
Button | None,
List | None,
Column,
Column | None,
List[Interpretation] | None,
]:
submit_btn, clear_btn, stop_btn, flag_btns = None, None, None, None
interpret_component_column, interpretation_set = None, None
with Column(variant="panel"):
input_component_column = Column()
with input_component_column:
for component in self.input_components:
component.render()
if self.interpretation:
interpret_component_column = Column(visible=False)
interpretation_set = []
with interpret_component_column:
for component in self.input_components:
interpretation_set.append(Interpretation(component))
with Row():
if self.interface_type in [
InterfaceTypes.STANDARD,
InterfaceTypes.INPUT_ONLY,
]:
clear_btn = Button("Clear")
if not self.live:
submit_btn = Button("Submit", variant="primary")
# Stopping jobs only works if the queue is enabled
# We don't know if the queue is enabled when the interface
# is created. We use whether a generator function is provided
# as a proxy of whether the queue will be enabled.
# Using a generator function without the queue will raise an error.
if inspect.isgeneratorfunction(self.fn):
stop_btn = Button("Stop", variant="stop")
elif self.interface_type == InterfaceTypes.UNIFIED:
clear_btn = Button("Clear")
submit_btn = Button("Submit", variant="primary")
if inspect.isgeneratorfunction(self.fn) and not self.live:
stop_btn = Button("Stop", variant="stop")
if self.allow_flagging == "manual":
flag_btns = self.render_flag_btns()
elif self.allow_flagging == "auto":
flag_btns = [(submit_btn, None)]
return (
submit_btn,
clear_btn,
stop_btn,
flag_btns,
input_component_column,
interpret_component_column,
interpretation_set,
)
def render_output_column(
self,
submit_btn_in: Button | None,
) -> Tuple[Button | None, Button | None, Button | None, List | None, Button | None]:
submit_btn = submit_btn_in
interpretation_btn, clear_btn, flag_btns, stop_btn = None, None, None, None
with Column(variant="panel"):
for component in self.output_components:
if not (isinstance(component, State)):
component.render()
with Row():
if self.interface_type == InterfaceTypes.OUTPUT_ONLY:
clear_btn = Button("Clear")
submit_btn = Button("Generate", variant="primary")
if inspect.isgeneratorfunction(self.fn) and not self.live:
# Stopping jobs only works if the queue is enabled
# We don't know if the queue is enabled when the interface
# is created. We use whether a generator function is provided
# as a proxy of whether the queue will be enabled.
# Using a generator function without the queue will raise an error.
stop_btn = Button("Stop", variant="stop")
if self.allow_flagging == "manual":
flag_btns = self.render_flag_btns()
elif self.allow_flagging == "auto":
assert submit_btn is not None, "Submit button not rendered"
flag_btns = [(submit_btn, None)]
if self.interpretation:
interpretation_btn = Button("Interpret")
return submit_btn, clear_btn, stop_btn, flag_btns, interpretation_btn
def render_article(self):
if self.article:
Markdown(self.article)
def attach_submit_events(self, submit_btn: Button | None, stop_btn: Button | None):
if self.live:
if self.interface_type == InterfaceTypes.OUTPUT_ONLY:
assert submit_btn is not None, "Submit button not rendered"
super().load(self.fn, None, self.output_components)
# For output-only interfaces, the user probably still want a "generate"
# button even if the Interface is live
submit_btn.click(
self.fn,
None,
self.output_components,
api_name="predict",
preprocess=not (self.api_mode),
postprocess=not (self.api_mode),
batch=self.batch,
max_batch_size=self.max_batch_size,
)
else:
for component in self.input_components:
if isinstance(component, Streamable) and component.streaming:
component.stream(
self.fn,
self.input_components,
self.output_components,
api_name="predict",
preprocess=not (self.api_mode),
postprocess=not (self.api_mode),
)
continue
if isinstance(component, Changeable):
component.change(
self.fn,
self.input_components,
self.output_components,
api_name="predict",
preprocess=not (self.api_mode),
postprocess=not (self.api_mode),
)
else:
assert submit_btn is not None, "Submit button not rendered"
pred = submit_btn.click(
self.fn,
self.input_components,
self.output_components,
api_name="predict",
scroll_to_output=True,
preprocess=not (self.api_mode),
postprocess=not (self.api_mode),
batch=self.batch,
max_batch_size=self.max_batch_size,
)
if stop_btn:
stop_btn.click(
None,
inputs=None,
outputs=None,
cancels=[pred],
)
def attach_clear_events(
self,
clear_btn: Button,
input_component_column: Column | None,
interpret_component_column: Column | None,
):
clear_btn.click(
None,
[],
(
self.input_components
+ self.output_components
+ ([input_component_column] if input_component_column else [])
+ ([interpret_component_column] if self.interpretation else [])
), # type: ignore
_js=f"""() => {json.dumps(
[getattr(component, "cleared_value", None)
for component in self.input_components + self.output_components] + (
[Column.update(visible=True)]
if self.interface_type
in [
InterfaceTypes.STANDARD,
InterfaceTypes.INPUT_ONLY,
InterfaceTypes.UNIFIED,
]
else []
)
+ ([Column.update(visible=False)] if self.interpretation else [])
)}
""",
)
def attach_interpretation_events(
self,
interpretation_btn: Button | None,
interpretation_set: List[Interpretation] | None,
input_component_column: Column | None,
interpret_component_column: Column | None,
):
if interpretation_btn:
interpretation_btn.click(
self.interpret_func,
inputs=self.input_components + self.output_components,
outputs=interpretation_set
or [] + [input_component_column, interpret_component_column], # type: ignore
preprocess=False,
)
def render_flagging_buttons(self, flag_btns: List | None):
if flag_btns:
if self.interface_type in [
InterfaceTypes.STANDARD,
InterfaceTypes.OUTPUT_ONLY,
InterfaceTypes.UNIFIED,
]:
if (
self.interface_type == InterfaceTypes.UNIFIED
or self.allow_flagging == "auto"
):
flag_components = self.input_components
else:
flag_components = self.input_components + self.output_components
for flag_btn, flag_option in flag_btns:
flag_method = FlagMethod(self.flagging_callback, flag_option)
flag_btn.click(
flag_method,
inputs=flag_components,
outputs=[],
preprocess=False,
queue=False,
)
def render_examples(self):
if self.examples:
non_state_inputs = [
c for c in self.input_components if not isinstance(c, State)
]
non_state_outputs = [
c for c in self.output_components if not isinstance(c, State)
]
self.examples_handler = Examples(
examples=self.examples,
inputs=non_state_inputs, # type: ignore
outputs=non_state_outputs, # type: ignore
fn=self.fn,
cache_examples=self.cache_examples,
examples_per_page=self.examples_per_page,
_api_mode=self.api_mode,
batch=self.batch,
)
def __str__(self):
return self.__repr__()
def __repr__(self):
repr = f"Gradio Interface for: {self.__name__}"
repr += "\n" + "-" * len(repr)
repr += "\ninputs:"
for component in self.input_components:
repr += "\n|-{}".format(str(component))
repr += "\noutputs:"
for component in self.output_components:
repr += "\n|-{}".format(str(component))
return repr
async def interpret_func(self, *args):
return await self.interpret(list(args)) + [
Column.update(visible=False),
Column.update(visible=True),
]
async def interpret(self, raw_input: List[Any]) -> List[Any]:
return [
{"original": raw_value, "interpretation": interpretation}
for interpretation, raw_value in zip(
(await interpretation.run_interpret(self, raw_input))[0], raw_input
)
]
def test_launch(self) -> None:
"""
Deprecated.
"""
warnings.warn("The Interface.test_launch() function is deprecated.")
@document()
class TabbedInterface(Blocks):
"""
A TabbedInterface is created by providing a list of Interfaces, each of which gets
rendered in a separate tab.
Demos: stt_or_tts
"""
def __init__(
self,
interface_list: List[Interface],
tab_names: List[str] | None = None,
title: str | None = None,
theme: str = "default",
analytics_enabled: bool | None = None,
css: str | None = None,
):
"""
Parameters:
interface_list: a list of interfaces to be rendered in tabs.
tab_names: a list of tab names. If None, the tab names will be "Tab 1", "Tab 2", etc.
title: a title for the interface; if provided, appears above the input and output components in large font. Also used as the tab title when opened in a browser window.
theme: which theme to use - right now, only "default" is supported.
analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
css: custom css or path to custom css file to apply to entire Blocks
Returns:
a Gradio Tabbed Interface for the given interfaces
"""
super().__init__(
title=title or "Gradio",
theme=theme,
analytics_enabled=analytics_enabled,
mode="tabbed_interface",
css=css,
)
if tab_names is None:
tab_names = ["Tab {}".format(i) for i in range(len(interface_list))]
with self:
if title:
Markdown(
"<h1 style='text-align: center; margin-bottom: 1rem'>"
+ title
+ "</h1>"
)
with Tabs():
for (interface, tab_name) in zip(interface_list, tab_names):
with Tab(label=tab_name):
interface.render()
def close_all(verbose: bool = True) -> None:
for io in Interface.get_instances():
io.close(verbose)
|