File size: 37,229 Bytes
01c9658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
"""
This is the core file in the `gradio` package, and defines the Interface class,
including various methods for constructing an interface and then launching it.
"""

from __future__ import annotations

import inspect
import json
import os
import pkgutil
import re
import warnings
import weakref
from typing import TYPE_CHECKING, Any, Callable, List, Tuple

from markdown_it import MarkdownIt
from mdit_py_plugins.dollarmath.index import dollarmath_plugin
from mdit_py_plugins.footnote.index import footnote_plugin

from gradio import Examples, interpretation, utils
from gradio.blocks import Blocks
from gradio.components import (
    Button,
    Interpretation,
    IOComponent,
    Markdown,
    State,
    get_component_instance,
)
from gradio.data_classes import InterfaceTypes
from gradio.documentation import document, set_documentation_group
from gradio.events import Changeable, Streamable
from gradio.flagging import CSVLogger, FlaggingCallback, FlagMethod
from gradio.layouts import Column, Row, Tab, Tabs
from gradio.pipelines import load_from_pipeline

set_documentation_group("interface")

if TYPE_CHECKING:  # Only import for type checking (is False at runtime).
    from transformers.pipelines.base import Pipeline


@document("launch", "load", "from_pipeline", "integrate", "queue")
class Interface(Blocks):
    """
    Interface is Gradio's main high-level class, and allows you to create a web-based GUI / demo
    around a machine learning model (or any Python function) in a few lines of code.
    You must specify three parameters: (1) the function to create a GUI for (2) the desired input components and
    (3) the desired output components. Additional parameters can be used to control the appearance
    and behavior of the demo.

    Example:
        import gradio as gr

        def image_classifier(inp):
            return {'cat': 0.3, 'dog': 0.7}

        demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
        demo.launch()
    Demos: hello_world, hello_world_3, gpt_j
    Guides: quickstart, key_features, sharing_your_app, interface_state, reactive_interfaces, advanced_interface_features, setting_up_a_gradio_demo_for_maximum_performance
    """

    # stores references to all currently existing Interface instances
    instances: weakref.WeakSet = weakref.WeakSet()

    @classmethod
    def get_instances(cls) -> List[Interface]:
        """
        :return: list of all current instances.
        """
        return list(Interface.instances)

    @classmethod
    def load(
        cls,
        name: str,
        src: str | None = None,
        api_key: str | None = None,
        alias: str | None = None,
        **kwargs,
    ) -> Interface:
        """
        Class method that constructs an Interface from a Hugging Face repo. Can accept
        model repos (if src is "models") or Space repos (if src is "spaces"). The input
        and output components are automatically loaded from the repo.
        Parameters:
            name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
            src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
            api_key: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co./settings/tokens
            alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
        Returns:
            a Gradio Interface object for the given model
        Example:
            import gradio as gr
            description = "Story generation with GPT"
            examples = [["An adventurer is approached by a mysterious stranger in the tavern for a new quest."]]
            demo = gr.Interface.load("models/EleutherAI/gpt-neo-1.3B", description=description, examples=examples)
            demo.launch()
        """
        return super().load(name=name, src=src, api_key=api_key, alias=alias, **kwargs)

    @classmethod
    def from_pipeline(cls, pipeline: Pipeline, **kwargs) -> Interface:
        """
        Class method that constructs an Interface from a Hugging Face transformers.Pipeline object.
        The input and output components are automatically determined from the pipeline.
        Parameters:
            pipeline: the pipeline object to use.
        Returns:
            a Gradio Interface object from the given Pipeline
        Example:
            import gradio as gr
            from transformers import pipeline
            pipe = pipeline("image-classification")
            gr.Interface.from_pipeline(pipe).launch()
        """
        interface_info = load_from_pipeline(pipeline)
        kwargs = dict(interface_info, **kwargs)
        interface = cls(**kwargs)
        return interface

    def __init__(
        self,
        fn: Callable,
        inputs: str | IOComponent | List[str | IOComponent] | None,
        outputs: str | IOComponent | List[str | IOComponent] | None,
        examples: List[Any] | List[List[Any]] | str | None = None,
        cache_examples: bool | None = None,
        examples_per_page: int = 10,
        live: bool = False,
        interpretation: Callable | str | None = None,
        num_shap: float = 2.0,
        title: str | None = None,
        description: str | None = None,
        article: str | None = None,
        thumbnail: str | None = None,
        theme: str = "default",
        css: str | None = None,
        allow_flagging: str | None = None,
        flagging_options: List[str] | None = None,
        flagging_dir: str = "flagged",
        flagging_callback: FlaggingCallback = CSVLogger(),
        analytics_enabled: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        _api_mode: bool = False,
        **kwargs,
    ):
        """
        Parameters:
            fn: the function to wrap an interface around. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: a single Gradio component, or list of Gradio components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of input components should match the number of parameters in fn. If set to None, then only the output components will be displayed.
            outputs: a single Gradio component, or list of Gradio components. Components can either be passed as instantiated objects, or referred to by their string shortcuts. The number of output components should match the number of values returned by fn. If set to None, then only the input components will be displayed.
            examples: sample inputs for the function; if provided, appear below the UI components and can be clicked to populate the interface. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component. A string path to a directory of examples can also be provided, but it should be within the directory with the python file running the gradio app. If there are multiple input components and a directory is provided, a log.csv file must be present in the directory to link corresponding inputs.
            cache_examples: If True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
            examples_per_page: If examples are provided, how many to display per page.
            live: whether the interface should automatically rerun if any of the inputs change.
            interpretation: function that provides interpretation explaining prediction output. Pass "default" to use simple built-in interpreter, "shap" to use a built-in shapley-based interpreter, or your own custom interpretation function. For more information on the different interpretation methods, see the Advanced Interface Features guide.
            num_shap: a multiplier that determines how many examples are computed for shap-based interpretation. Increasing this value will increase shap runtime, but improve results. Only applies if interpretation is "shap".
            title: a title for the interface; if provided, appears above the input and output components in large font. Also used as the tab title when opened in a browser window.
            description: a description for the interface; if provided, appears above the input and output components and beneath the title in regular font. Accepts Markdown and HTML content.
            article: an expanded article explaining the interface; if provided, appears below the input and output components in regular font. Accepts Markdown and HTML content.
            thumbnail: path or url to image to use as display image when the web demo is shared on social media.
            theme: Theme to use - right now, only "default" is supported. Can be set with the GRADIO_THEME environment variable.
            css: custom css or path to custom css file to use with interface.
            allow_flagging: one of "never", "auto", or "manual". If "never" or "auto", users will not see a button to flag an input and output. If "manual", users will see a button to flag. If "auto", every input the user submits will be automatically flagged (outputs are not flagged). If "manual", both the input and outputs are flagged when the user clicks flag button. This parameter can be set with environmental variable GRADIO_ALLOW_FLAGGING; otherwise defaults to "manual".
            flagging_options: if provided, allows user to select from the list of options when flagging. Only applies if allow_flagging is "manual".
            flagging_dir: what to name the directory where flagged data is stored.
            flagging_callback: An instance of a subclass of FlaggingCallback which will be called when a sample is flagged. By default logs to a local CSV file.
            analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
            batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
        """
        super().__init__(
            analytics_enabled=analytics_enabled,
            mode="interface",
            css=css,
            title=title or "Gradio",
            theme=theme,
            **kwargs,
        )

        if isinstance(fn, list):
            raise DeprecationWarning(
                "The `fn` parameter only accepts a single function, support for a list "
                "of functions has been deprecated. Please use gradio.mix.Parallel "
                "instead."
            )

        self.interface_type = InterfaceTypes.STANDARD
        if (inputs is None or inputs == []) and (outputs is None or outputs == []):
            raise ValueError("Must provide at least one of `inputs` or `outputs`")
        elif outputs is None or outputs == []:
            outputs = []
            self.interface_type = InterfaceTypes.INPUT_ONLY
        elif inputs is None or inputs == []:
            inputs = []
            self.interface_type = InterfaceTypes.OUTPUT_ONLY

        assert isinstance(inputs, (str, list, IOComponent))
        assert isinstance(outputs, (str, list, IOComponent))

        if not isinstance(inputs, list):
            inputs = [inputs]
        if not isinstance(outputs, list):
            outputs = [outputs]

        if self.is_space and cache_examples is None:
            self.cache_examples = True
        else:
            self.cache_examples = cache_examples or False

        state_input_indexes = [
            idx for idx, i in enumerate(inputs) if i == "state" or isinstance(i, State)
        ]
        state_output_indexes = [
            idx for idx, o in enumerate(outputs) if o == "state" or isinstance(o, State)
        ]

        if len(state_input_indexes) == 0 and len(state_output_indexes) == 0:
            pass
        elif len(state_input_indexes) != 1 or len(state_output_indexes) != 1:
            raise ValueError(
                "If using 'state', there must be exactly one state input and one state output."
            )
        else:
            state_input_index = state_input_indexes[0]
            state_output_index = state_output_indexes[0]
            if inputs[state_input_index] == "state":
                default = utils.get_default_args(fn)[state_input_index]
                state_variable = State(value=default)  # type: ignore
            else:
                state_variable = inputs[state_input_index]

            inputs[state_input_index] = state_variable
            outputs[state_output_index] = state_variable

            if cache_examples:
                warnings.warn(
                    "Cache examples cannot be used with state inputs and outputs."
                    "Setting cache_examples to False."
                )
            self.cache_examples = False

        self.input_components = [
            get_component_instance(i, render=False) for i in inputs
        ]
        self.output_components = [
            get_component_instance(o, render=False) for o in outputs
        ]

        for component in self.input_components + self.output_components:
            if not (isinstance(component, IOComponent)):
                raise ValueError(
                    f"{component} is not a valid input/output component for Interface."
                )

        if len(self.input_components) == len(self.output_components):
            same_components = [
                i is o for i, o in zip(self.input_components, self.output_components)
            ]
            if all(same_components):
                self.interface_type = InterfaceTypes.UNIFIED

        if self.interface_type in [
            InterfaceTypes.STANDARD,
            InterfaceTypes.OUTPUT_ONLY,
        ]:
            for o in self.output_components:
                assert isinstance(o, IOComponent)
                o.interactive = False  # Force output components to be non-interactive

        if (
            interpretation is None
            or isinstance(interpretation, list)
            or callable(interpretation)
        ):
            self.interpretation = interpretation
        elif isinstance(interpretation, str):
            self.interpretation = [
                interpretation.lower() for _ in self.input_components
            ]
        else:
            raise ValueError("Invalid value for parameter: interpretation")

        self.api_mode = _api_mode
        self.fn = fn
        self.fn_durations = [0, 0]
        self.__name__ = getattr(fn, "__name__", "fn")
        self.live = live
        self.title = title

        CLEANER = re.compile("<.*?>")

        def clean_html(raw_html):
            cleantext = re.sub(CLEANER, "", raw_html)
            return cleantext

        md = (
            MarkdownIt(
                "js-default",
                {
                    "linkify": True,
                    "typographer": True,
                    "html": True,
                },
            )
            .use(dollarmath_plugin)
            .use(footnote_plugin)
            .enable("table")
        )

        simple_description = None
        if description is not None:
            description = md.render(description)
            simple_description = clean_html(description)
        self.simple_description = simple_description
        self.description = description
        if article is not None:
            article = utils.readme_to_html(article)
            article = md.render(article)
        self.article = article

        self.thumbnail = thumbnail
        self.theme = theme or os.getenv("GRADIO_THEME", "default")
        if not (self.theme == "default"):
            warnings.warn("Currently, only the 'default' theme is supported.")

        self.examples = examples
        self.num_shap = num_shap
        self.examples_per_page = examples_per_page

        self.simple_server = None

        # For analytics_enabled and allow_flagging: (1) first check for
        # parameter, (2) check for env variable, (3) default to True/"manual"
        self.analytics_enabled = (
            analytics_enabled
            if analytics_enabled is not None
            else os.getenv("GRADIO_ANALYTICS_ENABLED", "True") == "True"
        )
        if allow_flagging is None:
            allow_flagging = os.getenv("GRADIO_ALLOW_FLAGGING", "manual")
        if allow_flagging is True:
            warnings.warn(
                "The `allow_flagging` parameter in `Interface` now"
                "takes a string value ('auto', 'manual', or 'never')"
                ", not a boolean. Setting parameter to: 'manual'."
            )
            self.allow_flagging = "manual"
        elif allow_flagging == "manual":
            self.allow_flagging = "manual"
        elif allow_flagging is False:
            warnings.warn(
                "The `allow_flagging` parameter in `Interface` now"
                "takes a string value ('auto', 'manual', or 'never')"
                ", not a boolean. Setting parameter to: 'never'."
            )
            self.allow_flagging = "never"
        elif allow_flagging == "never":
            self.allow_flagging = "never"
        elif allow_flagging == "auto":
            self.allow_flagging = "auto"
        else:
            raise ValueError(
                "Invalid value for `allow_flagging` parameter."
                "Must be: 'auto', 'manual', or 'never'."
            )

        self.flagging_options = flagging_options
        self.flagging_callback = flagging_callback
        self.flagging_dir = flagging_dir
        self.batch = batch
        self.max_batch_size = max_batch_size

        self.save_to = None  # Used for selenium tests
        self.share = None
        self.share_url = None
        self.local_url = None

        self.favicon_path = None

        if self.analytics_enabled:
            data = {
                "mode": self.mode,
                "fn": fn,
                "inputs": inputs,
                "outputs": outputs,
                "live": live,
                "ip_address": self.ip_address,
                "interpretation": interpretation,
                "allow_flagging": allow_flagging,
                "custom_css": self.css is not None,
                "theme": self.theme,
                "version": (pkgutil.get_data(__name__, "version.txt") or b"")
                .decode("ascii")
                .strip(),
            }
            utils.initiated_analytics(data)

        utils.version_check()
        Interface.instances.add(self)

        param_names = inspect.getfullargspec(self.fn)[0]
        for component, param_name in zip(self.input_components, param_names):
            assert isinstance(component, IOComponent)
            if component.label is None:
                component.label = param_name
        for i, component in enumerate(self.output_components):
            assert isinstance(component, IOComponent)
            if component.label is None:
                if len(self.output_components) == 1:
                    component.label = "output"
                else:
                    component.label = "output " + str(i)

        if self.allow_flagging != "never":
            if (
                self.interface_type == InterfaceTypes.UNIFIED
                or self.allow_flagging == "auto"
            ):
                self.flagging_callback.setup(self.input_components, self.flagging_dir)  # type: ignore
            elif self.interface_type == InterfaceTypes.INPUT_ONLY:
                pass
            else:
                self.flagging_callback.setup(
                    self.input_components + self.output_components, self.flagging_dir  # type: ignore
                )

        # Render the Gradio UI
        with self:
            self.render_title_description()

            submit_btn, clear_btn, stop_btn, flag_btns = None, None, None, None
            interpretation_btn, interpretation_set = None, None
            input_component_column, interpret_component_column = None, None

            with Row().style(equal_height=False):
                if self.interface_type in [
                    InterfaceTypes.STANDARD,
                    InterfaceTypes.INPUT_ONLY,
                    InterfaceTypes.UNIFIED,
                ]:
                    (
                        submit_btn,
                        clear_btn,
                        stop_btn,
                        flag_btns,
                        input_component_column,
                        interpret_component_column,
                        interpretation_set,
                    ) = self.render_input_column()
                if self.interface_type in [
                    InterfaceTypes.STANDARD,
                    InterfaceTypes.OUTPUT_ONLY,
                ]:
                    (
                        submit_btn_out,
                        clear_btn_2_out,
                        stop_btn_2_out,
                        flag_btns_out,
                        interpretation_btn,
                    ) = self.render_output_column(submit_btn)
                    submit_btn = submit_btn or submit_btn_out
                    clear_btn = clear_btn or clear_btn_2_out
                    stop_btn = stop_btn or stop_btn_2_out
                    flag_btns = flag_btns or flag_btns_out

            assert clear_btn is not None, "Clear button not rendered"

            self.attach_submit_events(submit_btn, stop_btn)
            self.attach_clear_events(
                clear_btn, input_component_column, interpret_component_column
            )
            self.attach_interpretation_events(
                interpretation_btn,
                interpretation_set,
                input_component_column,
                interpret_component_column,
            )

            self.render_flagging_buttons(flag_btns)
            self.render_examples()
            self.render_article()

        self.config = self.get_config_file()

    def render_title_description(self) -> None:
        if self.title:
            Markdown(
                "<h1 style='text-align: center; margin-bottom: 1rem'>"
                + self.title
                + "</h1>"
            )
        if self.description:
            Markdown(self.description)

    def render_flag_btns(self) -> List[Tuple[Button, str | None]]:
        if self.flagging_options is None:
            return [(Button("Flag"), None)]
        else:
            return [
                (
                    Button("Flag as " + flag_option),
                    flag_option,
                )
                for flag_option in self.flagging_options
            ]

    def render_input_column(
        self,
    ) -> Tuple[
        Button | None,
        Button | None,
        Button | None,
        List | None,
        Column,
        Column | None,
        List[Interpretation] | None,
    ]:
        submit_btn, clear_btn, stop_btn, flag_btns = None, None, None, None
        interpret_component_column, interpretation_set = None, None

        with Column(variant="panel"):
            input_component_column = Column()
            with input_component_column:
                for component in self.input_components:
                    component.render()
            if self.interpretation:
                interpret_component_column = Column(visible=False)
                interpretation_set = []
                with interpret_component_column:
                    for component in self.input_components:
                        interpretation_set.append(Interpretation(component))
            with Row():
                if self.interface_type in [
                    InterfaceTypes.STANDARD,
                    InterfaceTypes.INPUT_ONLY,
                ]:
                    clear_btn = Button("Clear")
                    if not self.live:
                        submit_btn = Button("Submit", variant="primary")
                        # Stopping jobs only works if the queue is enabled
                        # We don't know if the queue is enabled when the interface
                        # is created. We use whether a generator function is provided
                        # as a proxy of whether the queue will be enabled.
                        # Using a generator function without the queue will raise an error.
                        if inspect.isgeneratorfunction(self.fn):
                            stop_btn = Button("Stop", variant="stop")
                elif self.interface_type == InterfaceTypes.UNIFIED:
                    clear_btn = Button("Clear")
                    submit_btn = Button("Submit", variant="primary")
                    if inspect.isgeneratorfunction(self.fn) and not self.live:
                        stop_btn = Button("Stop", variant="stop")
                    if self.allow_flagging == "manual":
                        flag_btns = self.render_flag_btns()
                    elif self.allow_flagging == "auto":
                        flag_btns = [(submit_btn, None)]
        return (
            submit_btn,
            clear_btn,
            stop_btn,
            flag_btns,
            input_component_column,
            interpret_component_column,
            interpretation_set,
        )

    def render_output_column(
        self,
        submit_btn_in: Button | None,
    ) -> Tuple[Button | None, Button | None, Button | None, List | None, Button | None]:
        submit_btn = submit_btn_in
        interpretation_btn, clear_btn, flag_btns, stop_btn = None, None, None, None

        with Column(variant="panel"):
            for component in self.output_components:
                if not (isinstance(component, State)):
                    component.render()
            with Row():
                if self.interface_type == InterfaceTypes.OUTPUT_ONLY:
                    clear_btn = Button("Clear")
                    submit_btn = Button("Generate", variant="primary")
                    if inspect.isgeneratorfunction(self.fn) and not self.live:
                        # Stopping jobs only works if the queue is enabled
                        # We don't know if the queue is enabled when the interface
                        # is created. We use whether a generator function is provided
                        # as a proxy of whether the queue will be enabled.
                        # Using a generator function without the queue will raise an error.
                        stop_btn = Button("Stop", variant="stop")
                if self.allow_flagging == "manual":
                    flag_btns = self.render_flag_btns()
                elif self.allow_flagging == "auto":
                    assert submit_btn is not None, "Submit button not rendered"
                    flag_btns = [(submit_btn, None)]
                if self.interpretation:
                    interpretation_btn = Button("Interpret")

        return submit_btn, clear_btn, stop_btn, flag_btns, interpretation_btn

    def render_article(self):
        if self.article:
            Markdown(self.article)

    def attach_submit_events(self, submit_btn: Button | None, stop_btn: Button | None):
        if self.live:
            if self.interface_type == InterfaceTypes.OUTPUT_ONLY:
                assert submit_btn is not None, "Submit button not rendered"
                super().load(self.fn, None, self.output_components)
                # For output-only interfaces, the user probably still want a "generate"
                # button even if the Interface is live
                submit_btn.click(
                    self.fn,
                    None,
                    self.output_components,
                    api_name="predict",
                    preprocess=not (self.api_mode),
                    postprocess=not (self.api_mode),
                    batch=self.batch,
                    max_batch_size=self.max_batch_size,
                )
            else:
                for component in self.input_components:
                    if isinstance(component, Streamable) and component.streaming:
                        component.stream(
                            self.fn,
                            self.input_components,
                            self.output_components,
                            api_name="predict",
                            preprocess=not (self.api_mode),
                            postprocess=not (self.api_mode),
                        )
                        continue
                    if isinstance(component, Changeable):
                        component.change(
                            self.fn,
                            self.input_components,
                            self.output_components,
                            api_name="predict",
                            preprocess=not (self.api_mode),
                            postprocess=not (self.api_mode),
                        )
        else:
            assert submit_btn is not None, "Submit button not rendered"
            pred = submit_btn.click(
                self.fn,
                self.input_components,
                self.output_components,
                api_name="predict",
                scroll_to_output=True,
                preprocess=not (self.api_mode),
                postprocess=not (self.api_mode),
                batch=self.batch,
                max_batch_size=self.max_batch_size,
            )
            if stop_btn:
                stop_btn.click(
                    None,
                    inputs=None,
                    outputs=None,
                    cancels=[pred],
                )

    def attach_clear_events(
        self,
        clear_btn: Button,
        input_component_column: Column | None,
        interpret_component_column: Column | None,
    ):
        clear_btn.click(
            None,
            [],
            (
                self.input_components
                + self.output_components
                + ([input_component_column] if input_component_column else [])
                + ([interpret_component_column] if self.interpretation else [])
            ),  # type: ignore
            _js=f"""() => {json.dumps(
                [getattr(component, "cleared_value", None)
                    for component in self.input_components + self.output_components] + (
                    [Column.update(visible=True)]
                    if self.interface_type
                        in [
                            InterfaceTypes.STANDARD,
                            InterfaceTypes.INPUT_ONLY,
                            InterfaceTypes.UNIFIED,
                        ]
                    else []
                )
                + ([Column.update(visible=False)] if self.interpretation else [])
            )}
            """,
        )

    def attach_interpretation_events(
        self,
        interpretation_btn: Button | None,
        interpretation_set: List[Interpretation] | None,
        input_component_column: Column | None,
        interpret_component_column: Column | None,
    ):
        if interpretation_btn:
            interpretation_btn.click(
                self.interpret_func,
                inputs=self.input_components + self.output_components,
                outputs=interpretation_set
                or [] + [input_component_column, interpret_component_column],  # type: ignore
                preprocess=False,
            )

    def render_flagging_buttons(self, flag_btns: List | None):
        if flag_btns:
            if self.interface_type in [
                InterfaceTypes.STANDARD,
                InterfaceTypes.OUTPUT_ONLY,
                InterfaceTypes.UNIFIED,
            ]:
                if (
                    self.interface_type == InterfaceTypes.UNIFIED
                    or self.allow_flagging == "auto"
                ):
                    flag_components = self.input_components
                else:
                    flag_components = self.input_components + self.output_components
                for flag_btn, flag_option in flag_btns:
                    flag_method = FlagMethod(self.flagging_callback, flag_option)
                    flag_btn.click(
                        flag_method,
                        inputs=flag_components,
                        outputs=[],
                        preprocess=False,
                        queue=False,
                    )

    def render_examples(self):
        if self.examples:
            non_state_inputs = [
                c for c in self.input_components if not isinstance(c, State)
            ]
            non_state_outputs = [
                c for c in self.output_components if not isinstance(c, State)
            ]
            self.examples_handler = Examples(
                examples=self.examples,
                inputs=non_state_inputs,  # type: ignore
                outputs=non_state_outputs,  # type: ignore
                fn=self.fn,
                cache_examples=self.cache_examples,
                examples_per_page=self.examples_per_page,
                _api_mode=self.api_mode,
                batch=self.batch,
            )

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        repr = f"Gradio Interface for: {self.__name__}"
        repr += "\n" + "-" * len(repr)
        repr += "\ninputs:"
        for component in self.input_components:
            repr += "\n|-{}".format(str(component))
        repr += "\noutputs:"
        for component in self.output_components:
            repr += "\n|-{}".format(str(component))
        return repr

    async def interpret_func(self, *args):
        return await self.interpret(list(args)) + [
            Column.update(visible=False),
            Column.update(visible=True),
        ]

    async def interpret(self, raw_input: List[Any]) -> List[Any]:
        return [
            {"original": raw_value, "interpretation": interpretation}
            for interpretation, raw_value in zip(
                (await interpretation.run_interpret(self, raw_input))[0], raw_input
            )
        ]

    def test_launch(self) -> None:
        """
        Deprecated.
        """
        warnings.warn("The Interface.test_launch() function is deprecated.")


@document()
class TabbedInterface(Blocks):
    """
    A TabbedInterface is created by providing a list of Interfaces, each of which gets
    rendered in a separate tab.
    Demos: stt_or_tts
    """

    def __init__(
        self,
        interface_list: List[Interface],
        tab_names: List[str] | None = None,
        title: str | None = None,
        theme: str = "default",
        analytics_enabled: bool | None = None,
        css: str | None = None,
    ):
        """
        Parameters:
            interface_list: a list of interfaces to be rendered in tabs.
            tab_names: a list of tab names. If None, the tab names will be "Tab 1", "Tab 2", etc.
            title: a title for the interface; if provided, appears above the input and output components in large font. Also used as the tab title when opened in a browser window.
            theme: which theme to use - right now, only "default" is supported.
            analytics_enabled: whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
            css: custom css or path to custom css file to apply to entire Blocks
        Returns:
            a Gradio Tabbed Interface for the given interfaces
        """
        super().__init__(
            title=title or "Gradio",
            theme=theme,
            analytics_enabled=analytics_enabled,
            mode="tabbed_interface",
            css=css,
        )
        if tab_names is None:
            tab_names = ["Tab {}".format(i) for i in range(len(interface_list))]
        with self:
            if title:
                Markdown(
                    "<h1 style='text-align: center; margin-bottom: 1rem'>"
                    + title
                    + "</h1>"
                )
            with Tabs():
                for (interface, tab_name) in zip(interface_list, tab_names):
                    with Tab(label=tab_name):
                        interface.render()


def close_all(verbose: bool = True) -> None:
    for io in Interface.get_instances():
        io.close(verbose)