Spaces:
Runtime error
Runtime error
File size: 4,409 Bytes
3342304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import sys
from typing import Dict
sys.path.insert(0, 'gradio-modified')
import gradio as gr
import numpy as np
from PIL import Image
import torch
if torch.cuda.is_available():
t = torch.cuda.get_device_properties(0).total_memory
r = torch.cuda.memory_reserved(0)
a = torch.cuda.memory_allocated(0)
f = t-a # free inside reserved
if f < 2**32:
device = 'cpu'
else:
device = 'cuda'
else:
device = 'cpu'
print('Use device:', device)
net = torch.jit.load(f'weights/pkp-v1.{device}.jit.pt')
def resize_original(img: Image.Image):
if img is None:
return img
if isinstance(img, dict):
img = img["image"]
guide_img = img.convert('L')
w, h = guide_img.size
scale = 256 / min(guide_img.size)
guide_img = guide_img.resize([int(round(s*scale)) for s in guide_img.size], Image.Resampling.LANCZOS)
guide = np.asarray(guide_img)
h, w = guide.shape[-2:]
rows = int(np.ceil(h/64))*64
cols = int(np.ceil(w/64))*64
ph_1 = (rows-h) // 2
ph_2 = rows-h - (rows-h) // 2
pw_1 = (cols-w) // 2
pw_2 = cols-w - (cols-w) // 2
guide = np.pad(guide, ((ph_1, ph_2), (pw_1, pw_2)), mode='constant', constant_values=255)
guide_img = Image.fromarray(guide)
return gr.Image.update(value=guide_img.convert('RGBA')), guide_img.convert('RGBA')
def colorize(img: Dict[str, Image.Image], guide_img: Image.Image, seed: int, hint_mode: str):
if not isinstance(img, dict):
return gr.update(visible=True)
if hint_mode == "Roughly Hint":
hint_mode_int = 0
elif hint_mode == "Precisely Hint":
hint_mode_int = 1
guide_img = guide_img.convert('L')
hint_img = img["mask"].convert('RGBA') # I modified gradio to enable it upload colorful mask
guide = torch.from_numpy(np.asarray(guide_img))[None,None].float().to(device) / 255.0 * 2 - 1
hint = torch.from_numpy(np.asarray(hint_img)).permute(2,0,1)[None].float().to(device) / 255.0 * 2 - 1
hint_alpha = (hint[:,-1:] > 0.99).float()
hint = hint[:,:3] * hint_alpha - 2 * (1 - hint_alpha)
np.random.seed(int(seed))
b, c, h, w = hint.shape
h //= 8
w //= 8
noises = [torch.from_numpy(np.random.randn(b, c, h, w)).float().to(device) for _ in range(16+1)]
with torch.inference_mode():
sample = net(noises, guide, hint, hint_mode_int)
out = sample[0].cpu().numpy().transpose([1,2,0])
out = np.uint8(((out + 1) / 2 * 255).clip(0,255))
return Image.fromarray(out).convert('RGB')
with gr.Blocks() as demo:
gr.Markdown('''<center><h1>Anime Colorization With Hint</h1></center>
<h2>Colorize your anime sketches with hint points.</h2>
This is a modified version of
<a href="https://github.com/HighCWu/pixel-guide-diffusion-for-anime-colorization">
HighCWu/pixel-guide-diffusion-for-anime-colorization
</a> with hint points inputs.<br />
''')
with gr.Row():
with gr.Column():
inp = gr.Image(
source="upload",
tool="sketch", # tool="color-sketch", # color-sketch upload image mixed with the original
type="pil",
label="Sketch",
interactive=True,
elem_id="sketch-canvas"
)
inp_store = gr.Image(
type="pil",
interactive=False
)
inp_store.visible = False
with gr.Column():
seed = gr.Slider(1, 2**32, step=1, label="Seed", interactive=True, randomize=True)
hint_mode = gr.Radio(["Roughly Hint", "Precisely Hint"], value="Roughly Hint", label="Hint Mode")
btn = gr.Button("Run")
with gr.Column():
output = gr.Image(type="pil", label="Output", interactive=False)
gr.Markdown('''
PS: Worse than the no hint version I thought. Probably because my model is underfitting in the super-resolution part<br />
I modified a little gradio codes for uploading the colorful hint points.
''')
gr.Markdown(
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=highcwu.anime-colorization-with-hint" alt="visitor badge"/></center>'
)
inp.upload(
resize_original,
inp,
[inp, inp_store],
)
btn.click(
colorize,
[inp, inp_store, seed, hint_mode],
output
)
if __name__ == "__main__":
demo.launch()
|