import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline class EmotionClassifier: def __init__(self, model_name: str): self.model = AutoModelForSequenceClassification.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.pipeline = pipeline( "text-classification", model=self.model, tokenizer=self.tokenizer, return_all_scores=True, ) def predict(self, input_text: str): pred = self.pipeline(input_text)[0] result = { "Sadness 😒": pred[0]["score"], "Joy πŸ˜†": pred[1]["score"], "Love πŸ₯°": pred[2]["score"], "Anger 🀬": pred[3]["score"], "Fear 😨": pred[4]["score"], "Surprise 😯": pred[5]["score"], } return result def main(): model = EmotionClassifier("bhadresh-savani/bert-base-uncased-emotion") iface = gr.Interface( fn=model.predict, inputs=gr.inputs.Textbox( lines=3, placeholder="Please type a sentence, this program will do the sentiment analysis ", label="Input Text", ), outputs="label", title="Emotion Classification", examples=[ "To be or not to be, that’s a question.", "Better a witty fool than a foolish wit.", "No matter how long night, the arrival of daylight Association.", "The retention will never give up.", "My only love sprung from my only hate.", ], ) iface.launch() if __name__ == "__main__": main()