Hero0963's picture
Update app.py
4f3dff0
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
class EmotionClassifier:
def __init__(self, model_name: str):
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.pipeline = pipeline(
"text-classification",
model=self.model,
tokenizer=self.tokenizer,
return_all_scores=True,
)
def predict(self, input_text: str):
pred = self.pipeline(input_text)[0]
result = {
"Sadness 😢": pred[0]["score"],
"Joy 😆": pred[1]["score"],
"Love 🥰": pred[2]["score"],
"Anger 🤬": pred[3]["score"],
"Fear 😨": pred[4]["score"],
"Surprise 😯": pred[5]["score"],
}
return result
def main():
model = EmotionClassifier("bhadresh-savani/bert-base-uncased-emotion")
iface = gr.Interface(
fn=model.predict,
inputs=gr.inputs.Textbox(
lines=3,
placeholder="Please type a sentence, this program will do the sentiment analysis ",
label="Input Text",
),
outputs="label",
title="Sentiment Analysis",
examples=[
"To be or not to be, that’s a question.",
"Better a witty fool than a foolish wit.",
"No matter how long night, the arrival of daylight Association.",
"The retention will never give up.",
"My only love sprung from my only hate.",
],
)
iface.launch()
if __name__ == "__main__":
main()