Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | |
class EmotionClassifier: | |
def __init__(self, model_name: str): | |
self.model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.pipeline = pipeline( | |
"text-classification", | |
model=self.model, | |
tokenizer=self.tokenizer, | |
return_all_scores=True, | |
) | |
def predict(self, input_text: str): | |
pred = self.pipeline(input_text)[0] | |
result = { | |
"Sadness 😢": pred[0]["score"], | |
"Joy 😆": pred[1]["score"], | |
"Love 🥰": pred[2]["score"], | |
"Anger 🤬": pred[3]["score"], | |
"Fear 😨": pred[4]["score"], | |
"Surprise 😯": pred[5]["score"], | |
} | |
return result | |
def main(): | |
model = EmotionClassifier("bhadresh-savani/bert-base-uncased-emotion") | |
iface = gr.Interface( | |
fn=model.predict, | |
inputs=gr.inputs.Textbox( | |
lines=3, | |
placeholder="Please type a sentence, this program will do the sentiment analysis ", | |
label="Input Text", | |
), | |
outputs="label", | |
title="Sentiment Analysis", | |
examples=[ | |
"To be or not to be, that’s a question.", | |
"Better a witty fool than a foolish wit.", | |
"No matter how long night, the arrival of daylight Association.", | |
"The retention will never give up.", | |
"My only love sprung from my only hate.", | |
], | |
) | |
iface.launch() | |
if __name__ == "__main__": | |
main() |